
Being Regular with Regular
Expressions
John Garmany

Session

Who Am I

John Garmany
Senior Consultant
Burleson Consulting

• West Point Graduate – GO ARMY!
• Masters Degree Information Systems
• Graduate Certificate in Software

Engineering

Definition of Regular Expressions

Formally defined by information theory as
defining the languages accepted by finite
automata Source Neal Ford.

A regular expression is a pattern that
describes a set of strings. Regular
expressions are constructed analogously
to arithmetic expressions, by using various
operators to combine smaller expressions.
Source grep man page

Regular Expressions

Used for String Pattern Matching

Actually is a Formal State Machine.

The match is true if you finish in an
acceptable state.

Unix and Regular Expressions

Many Unix utilities use Regular Expressions
Grep = Global Regular Expression Print
Sed = Stream Editor

Many Text Editors use RegEx to locate text.

Unix and Regular Expressions

APEX and Regular Expressions

Regular Expression Patterns

Characters and Numbers represent
themselves. ‘abc’ matches abc.

. - represents a single character or number.
The pattern ‘b.e’ matches bee, bye, b6e,
but not bei or b67e.

* - represents zero or more characters.
+ - represents one or more characters.
? - zero or one character.

Regular Expression Patterns

I want to represent a US telephone number:

Will this work?
…-…-….

How about this?
--***

Regular Expression Patterns

I want to represent a US telephone number:

Will this work?
…-…-….

123-456-7890 will match.

Regular Expression Patterns

I want to represent a US telephone number:

Will this work?
…-…-….

123-456-7890 will match.
So will: abc-def-hijk
Not the best solution.

Regular Expression Patterns

{count} - defines an exact number of
characters.
‘a{3}’ defines exactly three character a’s
or ‘aaa’.
‘.{4} matches any four characters.

We could define the phone number as:
.{3}-.{3}-.{4}

Regular Expression Patterns

{min, max} – defines a minimum and a
maximum number of characters.
‘.{2,8} matches any 2 or more characters,
up to 8 characters.

{min,} – defines a minimum or more
characters. There is no maximum.

Regular Expression Patterns

What does the pattern sto{1,}p match?

stop stp stoip
stoop stooop stoooooooooop

Regular Expression Patterns

[] – defines a subset of an expression. Any one
character will match the pattern.

[1234567890] will match any number, not a
letter.

The phone number pattern becomes:
[1234567890]{3}-[1234567890]{3}-

[1234567890]{4}

Regular Expression Patterns

You can also define a range in the brackets.

[0-9]{3}-[0-9]{3}-[0-9]{4}

Define uppercase letters: [A-Z]
Upper or lower case: [a-zA-Z]

Regular Expression Patterns

What does the pattern st[aeiou][A-Za-z]
match?

stop stay string
Step steP steal

How about abc[3-9]?
Acb1 abc3 abcd
abc8 abc9 abc2

Regular Expression Patterns

The caret (^) in a bracket matches any
characters except the characters following
the caret.

st[^o]p will match:

step stip strp
But not stop.

Regular Expression Patterns

^ - the pattern will match only the beginning
of the string.

$ - the pattern will match only the end of the
string. Does not include CR or line feeds.

^St[a-z] matches text that starts with ‘St’,
followed by zero or more lower case
letters.

Regular Expression Patterns

stop$ - only matches stop if it is at the last
word of the line.

| or vertical bar defines a Boolean OR.

[1-9]|[a-z] matches a number or lowercase
letter.

Regular Expression Patterns

Escape Character (\)
Sometimes you want to match a character that has

a defined meaning.

Match a number with two decimal points.
[0-9]+.[0-9]{2}

We must tell the expression parser that we want
the character period (.).

Regular Expression Patterns

Use the escape character to tell the parser
the period is the character period.

[0-9]+\.[0-9]{2}

Brackets sometime need to be escaped.
Not in Oracle.

.\{3\}-.\{3\}-.\{4\}

Regular Expression Patterns

Class Operators
[:digit:] Any digit
[:alpha:] Any upper or lower case letter
[:lower:] Any lower case letter
[:upper:] Any upper case letter
[:alnum:] Upper or lower case letter or number

[:xdigit:] Any hex digit
[:blank:] Space or Tab

Regular Expression Patterns

Class Operators cont.

[:space:] Space, tab, return, LF,CR, FF
[:cntrl:] Control Character, non printing
[:print:] Printable Character, space
[:graph:] Printable Character, no space
[:punct:] Punctuation, not control character or

alphanumeric

Regular Expression Patterns

Phone Number with Class Operators:

[:digit:]{3}-[:digit:]{3}-[:digit:]{4}

Being Greedy

Regular Expression parsers are greedy.
Returns the largest set of characters that

matches the pattern.

Think of taking the entire string and
comparing it to the pattern definition.
Then giving back characters until either a
match or there are no more characters.

Being Greedy

My pattern: .*4
Zero or more characters followed by a 4.

My string is: 123423434

Being Greedy

My pattern: .*4
Zero or more characters followed by a 4.

My string is: 123423434

The first match is the entire string.

Being Greedy

My pattern: .*4
Zero or more characters followed by a 4.

My string is: 123423434

The first match is the entire string.

Being Greedy

My pattern: ([:digit:]{3}-){3}
3 digits followed by a dash, 3 times

My string is: 123-423-434-987-

The first match is?

Being Greedy

My pattern: ([:digit:]{3}-){3}
3 digits followed by a dash, 3 times

My string is: 123-423-434-987-

The first match is ‘123-423-434-’.
Matching starts from the first character.

Expression Grouping

Also called: Tagging or Referencing

Allows a part of the pattern to be grouped.
There can only be 9 groups.
Groups are referenced using \1-9

([a-z]+) ([a-z]+)
Matches two lower case words.

Expression Grouping

If the matching string is ‘fast stop’ then

\1 references ‘fast and \2 references ‘stop’

\1 \2 results in ‘fast stop’
\2 \1 results in ‘stop fast’

What is this RegEx?

(1[012]|[1-9]):[0-5][0-9]

What is this RegEx?

(1[012]|[1-9]):[0-5][0-9]
Time format. 10:30, 7:45

How about this one? [:digit:]{5}(-[:digit:]{4})?

What is this RegEx?

(1[012]|[1-9]):[0-5][0-9]
Time format. 10:30, 7:45

How about this one? [:digit:]{5}(-[:digit:]{4})?
US Zip Code

How about this one? #(9*&)@$%

What is this RegEx?

(1[012]|[1-9]):[0-5][0-9]
Time format. 10:30, 7:45

How about this one? [:digit:]{5}(-[:digit:]{4})?
US Zip Code

How about this one? #(9*&)@$%
A cartoon cuss word, not a RegEx.

Using RegEx with Oracle

The Java Virtual Machine in the database
also implements the Java support for
Regular Expression.

Oracle 10g database provides 4 functions.
They operate on the database character

datatypes to include VARCHAR2, CHAR,
CLOB, NVARCHAR2, NCHAR, and
NCLOB.

Oracle 10g RegEx Functions
• REGEXP_LIKE Returns true if the pattern

is matched, otherwise false.
• REGEXP_INSTR Returns the position of the

start or end of the matching string. Returns
zero if the pattern is not matched.

• REGEXP_REPLACE Returns a string
where each matching pattern is replaced with
the text specified.

• REGEXP_SUBSTR Returns the matching
string, or NULL if no match is found.

Oracle 10g RegEx Functions

Options for all RegEx Functions
• i = case insensitive
• c = case sensitive
• n = the period will match a new line character
• m = allows the ^ and $ to match the beginning

and end of lines contained in the source.
Normally these characters would match the
beginning and end of the source. This is for
multi-line sources.

REGEXP_LIKE

Syntax: regexp_like(source, pattern(, options));
This function can be used anywhere a Boolean

result is acceptable.
begin
…
if (regexp_like(n_phone_number, .*[567]$))
then …
end if;
…

end;

REGEXP_LIKE
select

…
phone

from
…

where regexp_like(phone, .*[567]$);

REGEXP_LIKE
Lets say we have a column that hold your
OraCard credit card number.
The card number is 4 sets of 4 numbers.

XXXX XXXX XXXX XXXX

First, how can we express this as an
expression?

REGEXP_LIKE

XXXX XXXX XXXX XXXX

(([0-9]{4})([[:space:]])){3}[0-9]{4}

Now we can validate the column with a check
constraint.

REGEXP_LIKE
Create table bigtble
…
OraCard_num varchar2(20) constraint

card_ck check (regexp_like(OraCard_num,
’(([0-9]{4})([[:space]])){3}[0-9]{4}’)),

…

REGEXP_REPLACE
Syntax: regexp_replace(source, pattern, replace

string, position, occurrence, options)

select
regexp_replace('We are driving south by

south east','south', 'north')
from dual;

We are driving north by north east

REGEXP_INSTR
Syntax: regexp_instr(source, pattern, position,

occurrence, begin_end, options)

The begin_end defines whether you want the
position of the beginning of the occurrence or
the position of the end of the occurrence. This
defaults to 0 which is the beginning of the
occurrence. Use 1 to get the end position.

REGEXP_INSTR
select
regexp_instr('We are driving south by

south east','south')
from dual;
16
select
regexp_instr('We are driving south by
south east','south', 1, 2, 1)

from dual;
30

REGEXP_INSTR
select

name,
REGEXP_SUBSTR(lots_data,

'(([0-9]{4})([[:space:]])){3}[0-9]{4}') Card
from dumbtbl
where REGEXP_INSTR(lots_data,

'(([0-9]{4})([[:space:]])){3}[0-9]{4}') > 0;

JOB CLASS 7890 2345 6543 1234
CONSUMER GROUP 1234 5678 9012 3456
SCHEDULE 3456 8909 1234 6789
Mike Hammer 5678 9023 4567 1234

REGEXP_SUBSTR
Syntax: regexp_substr(source, pattern, position,

occurrence, options)

select
regexp_substr('We are driving south by

south east','south')
from dual;
south

Warning

RegEx provides a powerful pattern matching
capability. But that power comes at a
price.

Using the LIKE function will normally
execute faster than a RegEx function. Of
course it is also very restrictive in its
capability.

Test Results: 3-5 times CPU

Using Bind Variables

Build the expression normally.
Looking for area code 720.

select *
from test1
where regexp_like(c1,'^720');

720-743-7641

Using Bind Variables
Change to use bind variables
declare

tstval varchar2(30);
outval varchar2(30);

begin
tstval:='720';
select * into outval from test1
where regexp_like(c1,'^'||tstval);
dbms_output.put_line('Results: '||outval);

end;
/

Results: 720-743-7641

Using REGEX in Queries
We have a large varchar2 column that contains free form

data that was collected from many sources. Some users
have OraCard numbers in the column, but they are in
different locations. All OraCards have the same format.

Create table dumbtbl
(name varchar2(30),
lots_data varchar2(2000));

Using REGEX in Queries
Create table dumbtbl
(name varchar2(30),
lots_data varchar2(2000));

Find the name and card numbers.
select
name,
REGEXP_SUBSTR(lots_data,
’(([0-9]{4})([[:space:]])){3}[0-9]{4}’) Card

from dumbtbl
where REGEXP_LIKE(lots_data,

’(([0-9]{4})([[:space:]])){3}[0-9]{4}’);

Mike Hammer 2345 7890 4567 9012

Function Based Indexes

Function Based Indexes
I can create a function based index on the OraCard

numbers in lots_date.

create index card_idx on dumbtbl
(REGEXP_SUBSTR

(lots_data,’(([0-9]{4})([[:space:]])){3}[0-9]{4}’));

Making it is one thing, getting you queries to use it is
another.

bc oracle regex

Function Based Indexes

Conclusion

• RegEx is powerful. It can also be
confusing. Verify your pattern.

• Powerful tool for data mining.
• Not always the right choice.
• Remember the Java implementation is

also available.

April 15 - 19, 2007
Mandalay Bay Resort and

Casino
Las Vegas, Nevada

Contact Information

John Garmany
John.garmany@computer.org

	Being Regular with Regular Expressions
	Who Am I
	Definition of Regular Expressions
	Regular Expressions
	Unix and Regular Expressions
	Unix and Regular Expressions
	APEX and Regular Expressions
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Regular Expression Patterns
	Being Greedy
	Being Greedy
	Being Greedy
	Being Greedy
	Being Greedy
	Being Greedy
	Expression Grouping
	Expression Grouping
	What is this RegEx?
	What is this RegEx?
	What is this RegEx?
	What is this RegEx?
	Using RegEx with Oracle
	Oracle 10g RegEx Functions
	Oracle 10g RegEx Functions
	REGEXP_LIKE
	REGEXP_LIKE
	REGEXP_LIKE
	REGEXP_LIKE
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_INSTR
	REGEXP_INSTR
	REGEXP_INSTR
	REGEXP_SUBSTR
	Warning
	Using Bind Variables
	Using Bind Variables
	Using REGEX in Queries
	Using REGEX in Queries
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Conclusion
	Contact Information

