5>

Multi-Master Replication
Conflict Avoidance and
Resolution

By John Garmany and Robert Freeman (not pictured)

he following is the final chapter from Oracle Replication,
by John Garmany and Robert Freeman, published by

Rampant TechPress.

Congratulations if you have gotten this far and your tables are happily
replicating data back and forth. But you are not quite finished yet. If you are
using advanced replication, you need to take steps to avoid data conflicts
and implement conflict resolution.

Introduction

No matter how well you planned your replication environment, there are
many ways that conflicts with table keys can show up. Any time data is
loaded or changed outside the replication environment, such as offline
instantiation or data loading, you run the risk of creating key conflicts.

Before placing a replication environment into production, you must
implement conflict resolution to protect data integrity. In this chapter, we
are going to discuss what conflicts are, how to avoid them, and how to
implement an automated way to resolve them. Finally, we will discuss how to
determine when your data is out of synchronization between two tables, as
well as the methods to resynchronize them.

What are Conflicts?

The function of a primary key on a single table is easy to understand. The
primary key can be used to uniquely identify every row in the table. If you try
to insert a row into a table with a primary key and that key already exists in
the table, Oracle will reject the new row. In the PUBS database, authors are
listed in the author table that contains an author key called auth_key. This
key uniquely identifies each author. This is how you differentiate authors
with the same name, like Robert Smith.

Oracle’s replication uses this primary key to identify unique rows at all sites
containing that table. What about tables without primary keys? All tables in

the replication environment contain a key that replication uses to uniquely
identify rows across the separate master sites.

Remember, when you created the master group at the master definition site,
all tables that did not have a primary key had to have a column or columns
identified that uniquely identified rows. Using the SET COLUMNS procedure,
you created a key for Oracle to use in replication. Conflicts happen when
data is propagated that violates the key.

To greatly increase the efficiency of replication, Oracle propagates
transactions on a schedule. All sites that allow updates, such as updatable
Mviews and master sites, will insure that the keys used for replication are
not violated. When a row is inserted into a table, the local key is checked,
and if the data violates the key, the insert is refused. If the data does not
violate the key, it is inserted into the table and the change passes to the
deferred transaction queue.

During a push, the data is propagated to other master site deferred
transaction queues where the receiver applies them. If the receiver detects
that the data violates the key on the local site, it will refuse the transaction
and place it in the deferred error queue. This is an example of a conflict.
The data is applied at one master site but cannot be applied at another site.
At this point, the replicated tables no longer contain the same data.

Key conflicts are just one possible type of replication conflict. When a
receiver applies a transaction from the deferred transaction queue, it checks
the “before” image to insure that the table data is still the same. What
happens when one row of data is updated at two remote sites at the same
time? The first update propagates normally and is applied, the second update
follows and, because it expects the before image to be the original data, it
fails to be applied. The before image is changed by the first update. This is
called an update conflict.

A delete conflict is similar; one site updates a row while another site deletes
the row. If the update propagates first, the delete fails because the before
image does not match. If the delete propagates first, the row no longer exists
when the update is applied. As you can see, getting your replication
environment to function is just the beginning. To keep it operating, you need
to plan for conflict avoidance and apply a method of conflict resolution.

Conflict Avoidance

Conflict avoidance is the first step to insure transactions don’t end up in the
deferred error queues. In planning the replication environment, you must
insure that each master site has the ability to generate unique keys. In the
last chapter, we discussed two common methods to generate unique keys:
assigning blocks of numbers via sequences and attaching a site prefix to a
sequence number.

Assigning Blocks of Numbers Via Sequences

If a sequence is used to establish a primary key, you can assign each site a
block of numbers to be used for generating a primary key. This is
accomplished by setting the sequence at each site to start at a different
number.

continued on page 10

.
4th Qtr 2004 @ Page 9

Multi-Master Replication Conflict Avoidance and Resolution continued from page 9

connect pubs/pubs@navdb.world
create sequence pubs.seq_pk_author
increment by 1

start with 1

maxvalue 99999999

minvalue 1 nocycle

cache 10;

connect pubs/pubs@nydb.world
create sequence pubs.seq_pk_author
increment by 1

start with 100000000

maxvalue 199999999

minvalue 1 nocycle

cache 10;

connect pubs/pubs@newsite.world
create sequence pubs.seq pk_author
increment by 1

start with 200000000

maxvalue 1.0E28

minvalue 1 nocycle

cache 10;

The code above establishes a sequence at three master sites that start at
100,000,000 intervals. With a max value for a sequence equal to 1.0E28, you
have a very large pool to divide between the master sites.

There are two key points to remember. First, set up an automated check of
the sequences to warn you if any site begins to approach maxvalue. Second,
don't forget the future possibility of adding additional master sites. If you
divide the available number equally between all master sites, adding one
master site cuts the available number for one site in half to make room for
the new site. This issue alone makes this method of generating unique keys
less scalable.

Remember to check dbms_reputil.from_remote=FALSE inside
the trigger to insure that the trigger does not fire on a transac-
tion from a remote site.

Assigning a Prefix Based on Site

A more flexible (and scalable) approach is to have all sites start their
sequence at 1 and add a site prefix to the sequence number to generate the
key. At NAVDB.WORLD, the first three rows created would have the keys
navdb1, navdb2, and navdb3. At the master site MYDB.WORLD, the first
three would be mydb1, mydb2, and mydb3. As these rows are propagated
none of the keys will collide.

In real life, keys are not always created on sequences. In cases such as the
author_key column in the PUBS schema, you may need keys generated from
a central location. All master sites obtain their keys for that table from the
central repository. You must either require that only that site creates the
records or create a procedure on the remote site that will fetch the next key
from the depository. For efficiency, you could create a trigger that pre-
fetches a number of keys and places them in a table and provides them as
needed on the local site, fetching additional keys as needed.

It is always a much better solution to use the natural key of the
table, if one exists, rather than a derived key. A natural key can
avoid a great deal of trouble.

Page 10 @ SELECT Journal

As you can see, conflict avoidance must be part of your replication planning.
Once the replication environment has been created and is operating, it is
much harder to avoid conflicts. Also, insure that your conflict avoidance
method is flexible enough to handle adding and removing master sites.

However, no matter how diligent you are at planning conflict avoidance, you
will eventually have a conflict, and unless you implement conflict resolution,
your replication environment will grind to a halt until you manually intervene.

Conflict Resolution

Establishing conflict resolution is a process of defining rules for Oracle to
apply when a conflict is detected. If the conflict is resolved, the transaction
does not end up in the deferred error column group that the resolution
method applies to.

You can have multiple column groups on a table and define a priority for
each group. A column group can consist of all the columns in the table or
any subset of those columns. Once you have created a column group, you
can assign one or more conflict resolution methods to it. Oracle has defined
a number of standard conflict resolution methods that will usually meet your
needs. The following table provides a list of the different conflict resolution
methods Oracle makes available:

METHOD | DESCRIPTION

Latest With the latest timestamp value method, you define a
Timestamp| column that contains a date data type to use in comparing
Value multiple transactions. When a transaction fails because the
before image has changed, the column timestamps of the
transactions are compared, and if the second transaction
is later than the one changing the before image, the
second transaction is applied and overlays the current
data (which contains the first transaction).

Earliest This is the opposite of the above method. The method is
Timestamp| available but rarely used.

Value

Minimum | When a column group has a conflict between two transac-

Value, tions, the minimum value method evaluates the current

Maximum | and new values of a defined column and selects the lower

Value (or higher for maximum) values to determine if the new
columns are applied.

Group In this case, column groups are assigned a priority and

Priority conflicts are adjudicated to the highest priority group.

Value

Site In this instance, sites are assigned a priority. When two

Priority transactions conflict, the transaction from the master site

Value with the highest priority will be applied. This is actually a

special case of the Group Priority Value method above.

Conflict Resolution never performs a rollback of a transaction.
Since all master sites will contain the same resolution methods,
each site should apply the same transactions. If transaction

* A overwrites transaction B, the site that originally creates
transaction B will eventually overwrite it with transaction A.
Since all transactions are committed at the originating site,
rolling back the transaction is not possible.

What if Oracle is not able to determine which transaction should be applied
after using a conflict resolution method? You can define more than one
conflict resolution method. If Oracle is still unable to resolve a conflict after
using all defined conflict resolution methods, the transaction ends up in the
deferred error queue and someone must manually resolve the conflict.

Examples of Defining Conflict Resolutions

Let’s look at creating some of the more common resolution methods in our
PUBS schema. First, we will look at an example of the latest timestamp
conflict resolution. Then we will look at using the site priority conflict
resolution method.

Defining Latest Timestamp

Conflict resolution methods are defined using the
dbms_repcat.add_update_resolution procedure. In the following example,
we will configure Oracle to use the latest timestamp method of resolution to
settle conflicts with the pubs.sales table’s ORDER_DATE column. In this
example we will:

1. Define a column group for use by the resolution method.
2. Define the resolution method.
3. Add additional support as required.

Let’s look at these steps in more detail then.

Define the Column Group

The first step is to define a column group on the master definition site that
uses this resolution method.

execute dbms_repcat.make_column_group(
'PUBS', "SALES", 'SALES_COLGP',"*");

In this example, we are defining a column group called SALES_COLGP on
the sales table in the PUBS schema. This column group will include every
column in the table, since the “* is being used.

It is not necessary to include all columns in the column group. Since the
ORDER_DATE column can act as a primary key, we could have only defined
ORDER_DATE in our column group, which would have caused Oracle to
resolve only conflicts on that column. By defining all columns in the column
group, any conflict within the column group will use the conflict resolution
method.

Define the Conflict Resolution Method
Next, we define the conflict resolution method for that column group.

execute dbms_repcat.add_update_resolution(
sname => 'PUBS',

oname => 'SALES',

column_group => "SALES_COLGP',

sequence => 1,

method => 'LATEST TIMESTAMP',
parameter_column_name => 'ORDER DATE');

Now, when a conflict occurs on the column group, the first (and only, for the
moment) method of resolution will be the latest date method (defined via
the method parameter). The date within the ORDER_DATE column will be
used to resolve the conflict.

If we wanted to define a second method, we could use the same command,
but replace the method parameters and change the sequence to equal two.
Oracle will apply the two conflict resolution methods in the sequence order.

You might have noticed that the above example has limited usefulness, since
the order date is likely to remain the same for all transactions. It would be
more useful to compare the transaction execution time, rather than the
ORDER_DATE.

So let’s alter our replicated object using the procedure
dbms_repace.alter_master_repobject, which we call from the master
definition site. With this procedure, we will add an additional column to the
sales table that we’ll call SALES_TS of type DATE.

BEGIN
DBMS_REPCAT. SUSPEND_MASTER_ACTIVITY('REP_GROUP2');
DBMS_REPCAT.ALTER_MASTER_REPOBUECT(

sname => '"PUBS"',

oname => ""SALES"",

type => 'TABLE',

ddi_text = -
'alter table PUBS.SALES add (SALES_TS DATE)');
DBMS_REPCAT.RESUME_MASTER_ACTIVITY('REP_GROUP2');
END;
/

Now that we have added our column, we want it populated each time some
action takes place on the table. To perform this action we write the following
database trigger:

create trigger SALES_TS_TG

before insert or update

on PUBS.SALES

for each row

begin

if dbms_reputil.from_remote = FALSE
then :NEW.SALES_TS := SYSDATE;

end if;

end;

/

Now we need to replicate the trigger to the other master sites using the
create_master_repobject procedure. This will ensure the trigger is
replicated to all of the master replication sites:

BEGIN
DBMS_REPCAT. CREATE_MASTER_REPOBJECT (
gname => 'REP_GROUP2',
type => 'TRIGGER',
oname => "SALES',
sname => 'PUBS',
dd1_text => ' create trigger SALES_TS_TG
before insert or update
on PUBS. SALES
for each row
begin
if dbms_reputil.from_remote = FALSE
then :NEW.SALES_TS := SYSDATE;
end if;
end;');
END;
/

Then, we need to redefine the column group and add the conflict resolution
method as shown here:

execute dbms_repcat.add_update_resolution(
sname => 'PUBS',

oname => 'SALES',

column_group => "SALES_COLGP',

sequence = 1,

method => 'LATEST TIMESTAMP',
parameter_column_name => 'SALES_TS');

Now our replication will function more like a stand-alone database. If two

confinved on page 12

.
4th Qtr 2004 @ Page 11

Multi-Master Replication Conflict Avoidance and Resolution continued from page 11

users modify the same data, the data will be applied in the order of commits.

In our replication, the two transactions will be applied in the order of the
timestamp. This is the most common conflict resolution method.

There is one caveat to consider with this method. All replication database
servers must be operating on one time standard. If you have two servers in
your replication scheme, one in Virginia and the other in California, the
Virginia server time will be four hours ahead of the California server.

Normally databases used in a replication environment use a standard time,
either GMT or local time at the company headquarters. It doesn’t matter as
long as they are the same. You can also create the trigger to compensate for
the time differences, but you will not be able to replicate the trigger. Instead,
you will need to create the trigger at each site, adjusting for the time. Since I
live in Colorado I use Mountain Time, to convert to GMT, I would change the
trigger to convert the time.

<NEW.LAST_UPDATE := NEW_TIME(SYSDATE, 'MDT",'GMT");

If Oracle was unable to resolve the conflict using the latest timestamp, we
could provide an additional resolution method to use. It’s called the Site
Priority method.

Defining Site Priority

The site priority conflict resolution method uses a column value to
determine replication conflict priority. Before we start, we need to stop
replication activities for the group (this is known as a quiesce of the
replication group).

We define another column in the pubs.sales table that will contain an
identifier for the site that created the transaction. Next, we add a trigger to
insert a site identifier (usually the database global name). We then need to
define the site priorities, using the stored procedure
dbms_repcat.define_site_priority. Finally, create the column group and
define the conflict resolution method.

First, we need to stop replication as seen here:

BEGIN

DBMS_REPCAT . SUSPEND_MASTER_ACTIVITY('REP_GROUP2");
END;

/

For this example, we added the SALES.SALES_SP column (varchar2(30)) to
use for the site data (an example of adding a column to a replicated table
was shown earlier in this chapter). Next we need to add the trigger.

create trigger SALES_SP_TG

before insert or update

on PUBS. SALES

for each row

declare

site_name varchar2(30) := -
dbms_reputil.global_name;

begin

if dbms_reputil.from_remote = FALSE

then :NEW.SALES_SP := site_name;

end if;

end;

/

Page 12 @ SELECT Journal

Remember to add the trigger to the replication group so that it is replicated
to all master sites (an example of adding triggers to the replication group
was provided earlier).

Now, every update or insert transaction will contain the site’s global name in
the SALES_SP column. We need to define a priority to each site in our
replication scheme. The define_site_priority is the procedure we will use:

execute dbms_repcat.define_site_priority(
'REP_GROUP2", 'SITE_PRI");

execute dbms_repcat.add_site priority_site("
REP_GROUP2"', *SITE_PRI"', 'MYDB.WORLD',10);

execute dbms_repcat.add_site_priority_site('
REP_GROUP2", 'SITE_PRI", 'NAVDB.HORLD",100);

execute dbms_repcat.add_site priority_site("
REP_GROUP2', *SITE PRI", 'NEWSITE.WORLD',5);

Here, we define the priority for each site in our replication scheme. In this
example, the master definition site NAVDB.WORLD has the highest priority
(the higher the number, the higher the priority). Notice that we did not have
to create them in order, nor do you have to increment the priority number
by one (which comes in handy if you add a master site later down the line).
At this point, you are actually assigning priorities to a field in a column, not
actual master sites thus, you can predefine a priority for a master site that is
not yet created.

Now that we have defined our master sites priorities, we need to define the
conflict resolution method.

execute dbms_repcat.add_update_resolution(
sname => 'PUBS',

oname => "SALES',

column_group => "SALES_COLGP',

sequence => 2,

method => 'SITE PRIORITY',
parameter_column_name => 'SALES_SP',
priority_group => 'SITE_PRI');

Before resuming replication, we need to regenerate replication support for
the sales table.

execute dbms_repcat.generate_replication_support(
'PUBS', "SALES',"TABLE');

And finally, resume replication activity to propagate the changes to all other
master sites.

execute dbms_repcat.resume_master_activity(
'REP_GROUP2");

There are now two methods of conflict resolution defined on the pubs.sales
table. Oracle will first try to resolve any conflict using the latest timestamp
method. If that fails, it will try using the site priority method. If the site
priority method fails, the transaction will be placed in the deferred error
queue.

Monitoring Conflict Resolution

To monitor conflict resolution, Oracle provides a number of views. First, we
need to register the object that Oracle is going to maintain statistics on.

execute dbms_repcat.register_statistics(
'PUBS"', 'SALES');

You can then get information on resolved conflicts from the view
dba_represolution_statistics.

SELECT * FROM dba_represolution_statistics;

dba_represolution_statistics contains the following fields.

Name Nul1? Type

SNAME ~ NOT NULL VARCHAR2(30)

ONAME ~ NOT NULL VARCHAR2(30)
CONFLICT_TYPE VARCHAR2(10)
REFERENCE_NAME NOT NULL VARCHAR2(30)
METHOD_NAME NOT NULL VARCHAR2(80)
FUNCTION_NAME VARCHAR2(92)
PRIORITY_GROUP VARCHAR2(30)
RESOLVED_DATE NOT NULL DATE
PRIMARY_KEY_VALUE NOT NULL VARCHAR2(2000)

As conflicts are resolved, rows are added to the view. To remove the
statistics, you need to purge them.

execute dbms_repcat.purge_statistics(
'PUBS", "SALES");

To stop gathering resolution statics on the sales table:

execute dbms_repcat.cancel_statistics(
'PUBS', 'SALES');

Of course, data on conflicts that are not resolved is in the deferred error
queue and can be found in the deferror view.

select * from deferror;

Using OEM to Define Conflict Resolution Methods

Oracle Enterprise Manager can not only create column groups and define
conflict resolution, but it presents the information in a fairly comprehensive
way. While we wholeheartedly recommend OEM for monitoring multi-master
replication, we do not recommend it for creating multi-master replication
and conflict resolution.

Because of the complex nature and multiple layers of conflict resolution, we
recommend that you create scripts that document methods, column groups,
etc. OEM will create conflict resolution without allowing you to document
what and how it was created.

That being said, let’s look at how OEM creates the latest timestamp conflict
resolution method on the pubs.sales table.

Log on to OEM as REPADMIN and navigate to the replication group created
in the last chapter, REP_GROUP2. Submit a stop request to quiesce
replication activity. Expand the REP_GOUP2 folder and select the pubs.store
table.

First, we need to add a column to the store table called STORE_TS. Select
the Alter Object tab and enter the DDL to add the column and select apply.
Now, create the trigger and add it to the replication master group.

Alter Object

Enter DDL Tesxt:
alter table PUBS STORE add (STORE_TS DATE)

Figure 1. OEM Adding a Column to the store table

Select Column Subsetting to define the column group. The only column
group defined is the Shadow Group, which is an internal group that contains
all columns in the table. Once you define a column group, the shadow group
will disappear. Select the Create button to open the Create Column Group
window. Name the column group STORE_CG. Select all the columns and
move them to the right hand pane with the right arrow button.

. Create Column Group

Group Name: |STORE_CG

Available Columns: Columns:
| Name Type Mame Type -
£l STORE_ADDRESVARCHA
| | STORE_CITY VARCHAF
[l STORE_STATE VARCHAF
i) m STORE_ZIP VARCHAR
STORE_TS DATE |+
(@] [D 4] D
Remark:

oK) Cancel | Help J

Figure 2. OEM Create Column Group

Select OK to create the STORE_CG column group. Once the group is created,
highlight it and select the Add button in the Column Group Resolution
Methods text box to bring up the Edit Resolutions Methods Window. Select
the Latest Timestamp and STORE_TS from the combo boxes and select OK to
create the method.

continued on page 14

4th Qtr 2004 @ Page 13

Multi-Master Replication Conflict Avoidance and Resolution continued from page 13

. Create Column Group

Group Name: |STORE_CG

Available Columns: Columns:
Name Type Name Type =
—m ol UHE_I\U‘ME VAELUHAR

m STORE_ADDRESVARCHAR™
% | |flm STORE_CITY VARCHAF
m STORE_STATE VARCHAR
=) [l STORE_ZIP VARCHAF
STORE_T‘S DATE

4

4] D (4]

Remark:

|
i
>

[

OK) Cancel | Help J

Figure 3. OEM Update Resolution Methods

The final task is to again generate replication support for the store table and
then resume replication activity.

Setting up conflict resolution using OEM is relatively painless, however, there
is no documentation trail, such as a script, to allow you to recreate the
scheme if needed.

As you can see, advanced replication can and does become very
complicated, with multiple conflict resolution methods defined on column
groups, on tables, and in master groups. Documentation becomes very
important when multiple DBAs support the replication environment. As the
replication scheme grows in complexity, scripts to recreate and document it
become an important asset.

So now we have our replication scheme functional with conflict resolution in
place. The last area to cover is what happens when tables no longer contain
the same data. This is called Data Mis-convergence.

Data Mis-convergence

Data Mis-convergence happens when the data in the tables does not match.
This should never happen, but it will, so there needs to be a plan to
resynchronize the data. If the same number of rows exist in the replicated
tables, then the data mis-convergence was caused by updates performed
while replication was turned off using dbms_reputil.replication_off-

There are a number of ways to resynchronize the data in the tables. When
the data is out of sync, any update will generate a conflict, because the
before image is not what is expected. A last timestamp conflict resolution
method will automatically resolve the conflict and re-sync the data with the
latest update.

If knowledgeable about the replication scheme, a DBA may update all the
timestamp fields on a table to force all the rows to propagate the data from
the correct table, re-synchronizing the remote tables.

Using dbms_rectifier_diff

One way to determine if your data is out of synch is to use the
dbms_rectifier_diff package that comes with Oracle9:. This package compares
the data at a master site (not required to be the master definition site) with the

Page 14 @ SELECT Journal

data at a remote master site. It loads any discrepancies it finds into a user
created table and can then use that data to synchronize the two tables.

In this example we will compare the author table at NAVDB.WORLD to the
author table at MYDB.WORLD. First, we will create a couple of tables to hold
the data found by the differences procedure.

connect repadmin/repadmin@navdb.world

create table PUBS.MISSING_RONS_AUTHOR (
AUTHOR KEY VARCHAR2(11),
AUTHOR_LAST_NAME VARCHAR2(40),
AUTHOR_FIRST_NAME VARCHAR2(20),
AUTHOR_PHONE VARCHAR2(12),
AUTHOR_STREET ~ VARCHAR2(40),
AUTHOR_CITY VARCHAR2(20),
AUTHOR_STATE VARCHAR2(2),

AUTHOR_ZIP VARCHAR2(5),
AUTHOR_CONTRACT_NBR NUMBER(5));

create table PUBS.MISSING_LOCATION_AUTHOR (
present VARCHAR2(128),

absent VARCHAR2(128),

r_id ROWID);

The first table matches the definition of the author table so that it can hold a
complete row of data. The second table must be defined as shown. Next, we
need to suspend replication activity.

dbms_repcat.suspend_master_activity(
'REP_GROUP2");

Now execute the stored procedure dbms_rectifier_diff-differences to
determine if rows are not in sync between the two tables.

execute dbms_rectifier_diff.differenced(

snamel => 'PUBS',
onamel => "AUTHOR",
reference_site => "NAVDB.WORLD',
sname2 => 'PUBS',
oname2 => "AUTHOR",
comparison_site => 'MYDB.WORLD',

where_clause => NULL,
column_Tist
missing_rows_sname
missing_rows_onamel
missing_rows_oname?
missing_rows_site
max_missing
comit_rows

=> NULL,

=> 'PUBS',

=> "MISSING_ROWS_AUTHOR',

=> 'MISSING_LOCATION_AUTHOR',
=> "NAVDB.WORLD',

=> 500,

=> 100);

Using a NULL in the column_list parameter will cause all columns to be
used. The rows that are out of sync between the two tables are contained in
the missing_rows_author table. You can use this information to manually
fix the data or you can have Oracle re-sync the two tables.

To have Oracle resynchronize the two tables you next run the
dbms_rectifier_diff-rectify procedure. Oracle will resynchronize the
remote table with the local table. The local table’s data will not be changed.
Oracle will insert the missing rows and delete the rows that are not
contained in the local table.

Because of rectify’s resynchronization methodology, you may not want to use
it. It is important that you run these procedures from the location that has
the correct data. You must run differences before running rectify.

dbms_rectifier_diff.rectify(

snamel => 'PUBS',
onamel => "AUTHOR',
reference_site => "NAVDB.WORLD"',
sname2 => 'PUBS',
oname? => "AUTHOR',
comparison_site => 'MYDB.WORLD',
column_list = NULL,

missing_rows_sname => 'PUBS',

missing_rows_onamel => "MISSING_ROWS_AUTHOR',
missing_rows_oname2 => 'MISSING_LOCATION_AUTHOR' ,
missing_rows_site => "NAVDB.WORLD",
comit_rows = 100);

The last point about the dbms_rectifier_diff package is that both
procedures may take an extremely long time to execute. You might want to
just re-instantiate the remote table using transportable tablespaces or an
export of the local table.

Conclusion

This chapter contains a lot of complex procedures to insure the integrity of
your data in the replication environment. The key discussions were on
Conflict Avoidance, Conflict Resolution, and Data Mis-convergence.

¢ Conflict Avoidance — Plan the replication environment from the start to
insure conflicts are rare. Do not rely on only one site updating and
inserting data. Insure your plan is flexible enough to allow for adding or
remove master sites.

¢ Conflict Resolution — Here we introduced a few of the most common
methods of automatic conflict resolution and the steps required to
implement them. Remember that conflict resolution allows the database
to determine which transactions are applied when conflicts arise. If
Oracle is unable to make that determination, the transaction is placed in
the local deferred error queue and replication begins to fail.

¢ Data Mis-convergence — Re-synchronizing tables in a replication
environment can be a daunting task. Oracle97 provides the
dbms_rectifier_diff package to help you determine if your tables are no
longer synchronized. However, for large data sets, it may be
advantageous to reconstruct the replication table due to the time it will
take the rectify procedure to run.

That'’s it. We have implemented both basic and advanced replication,
monitoring scripts, and conflict resolution. You should now be able to plan
and create your replication environment.

This article has not been an exhaustive examination of Oracle replication,
nor was it meant to be. Our goal was to provide the basics, identify some of
the pitfalls, and give working examples that allow you to implement
replication in your environment.

Remember to start in a test environment. Plan out the types of replication
needed and don’t implement multi-master replication unless your
requirements dictate. Also, document each step. Remember, someone else
may have to support or rebuild the replication scheme.

About the Authors

John Garmany is a Senior Oracle DBA with Burleson Consulting. A
graduate of West Point, an Airborne Ranger and a retired Lt. Colonel
with 20+ years of IT experience, he also holds a master’s degree in
information systems, a graduate certificate in software engineering,
and a BS degree in electrical engineering from West Point. A respected
Oracle expert and author, Garmany writes for Oracle Internals,
SearchOracle and DBAZine. He is the author of four bestselling Oracle
books published by Rampant TechPress, Oracle Press, and CRC Press
and hosts a popular Oracle Application Server Newsletter.

Robert Freeman is an Oracle expert and author of five popular
Oracle books, including Oracle9i RMAN Backup & Recovery and the
bestselling Oracle Replication. A master of martial arts and a black
belt in karate, Freeman is certified in Oracle7 and Oracle8 with more
than a decade of experience. An exciting and dynamic speaker, Robert
Freeman has taught extensively and is a popular speaker at Oracle
conferences.

4th Qtr 2004 @ Page 15

