
g

Server Manageability
New Features

Summary of Contents

Chapter 1 Oracle Database 10g Server Manageability
Chapter 2 Performance Tuning New Features
Chapter 3 Security New Features
Chapter 4 Availability New Features
Chapter 5 Business Intelligence Improvements
Chapter 6 Application Development New Features
Chapter 7 Other Database New Features
Chapter 8 Java, JDBC, SQLJ, and Other New Web-Related Features

This is a limited edition preview of content from Oracle Database 10g New Features (ISBN: 0072229470). The content is

based on the current beta release at the time of writing, and is not a comprehensive representation of the new feature

set that will be in the final release of the software and book. We have made every effort to make sure that there are not
errors in the text or code as of the printing. However, all of the content is subject to change based on the final release of
the software and further editing.

with commentary by

Jonathan Lewis

Sneak Peek Beta 1 Edition

CHAPTER 1

W
elcome to Chapter 1 of Oracle Database 10g New Features! This
chapter first explains how to upgrade to Oracle Database 10g and
then describes the various Oracle Database 10g features that are
designed to make managing the server easier. This preview is based
on the current beta at the time of writing. The final version of the

book will cover many more exciting new manageability features from the final release
of the software. The following are the specific topics that are covered:

■ Upgrading to Oracle Database 10g

■ Using new statistics-collection features

■ Flushing the database buffer cache

■ Using the Database Resource Manager new features

■ Firing up the new job scheduler (known as The Scheduler)

■ Learning all about user-configurable default tablespaces

■ Using tablespace groups and multiple default temporary tablespaces

■ Renaming tablespaces

■ Dropping databases

■ Taking advantage of new LOB storage limitations

■ Using the SYSAUX tablespace

■ Using Automated Storage Management (ASM)

Upgrading to Oracle Database 10g
Oracle Database 10g provides a fairly easy upgrade path for users of older Oracle
versions. The following versions can directly be upgraded to Oracle Database 10g:

■ Oracle Database 8.0.6

■ Oracle Database 8.1.7

■ Oracle Database 9.0.1

■ Oracle Database 9.2

If your database version is not in the preceding list, then you must first upgrade to
one of these versions, after which you can upgrade to Oracle Database 10g.

Upgrading the Database
After you are at a supported upgrade level, you can upgrade to Oracle Database 10g by
using any one of the following four upgrade options:

■ Use the Oracle Database Upgrade Assistant (DBUA).

■ Perform a manual upgrade.

8

McGraw-Hill/Osborne Sample Chapter

9

McGraw-Hill/Osborne Sample Chapter

■ Use exp/imp to copy the data in your database to a new 10g database.

■ Use the SQL*Plus copy command or the create table as select command
to copy the data from your current database to your new 10g database.

NOTE
Always back up your database before you start your upgrade!

The DBUA
The DBUA is a GUI that is designed for upgrading your Oracle database to Oracle
Database 10g. You will have the option of starting the DBUA from the Oracle Universal
Installer (OUI) when installing Oracle Database 10g. DBUA guides you through the
upgrade of your Oracle database. You can also start the DBUA at any time in stand-alone
fashion (from the command line, just enter dbua) to upgrade your database. From
Windows, you can also start the DBUA from the Start menu (either from the Oracle folder
or use start | run and enter dbua). One nice feature of the DBUA is that it will offer to back
up your database for you. This feature does have some limited functionality, because
backups to removable media are not supported.

CAUTION
Oracle Database 10g only supports a direct downgrade back to
Oracle release 9.2.0.3 or later. You can use imp/exp (Oracle’s
import/export utilities), however, to move the migrated database
data to other versions of Oracle. I strongly advise that you test this
method of downgrading on a non-production server first, if you
plan to use it.

Performing Manual Upgrades
Manual upgrades (my personal favorite) allow you to use a series of scripts and utilities
to upgrade your database. The summary steps of manual upgrades include:

■ Develop a test plan to run after your upgrade.

■ Back up your database.

■ Run the Upgrade Information Tool (UIT), which is a SQL script, utlu10li.sql,
located in the directory $ORACLE_HOME/rdbms/admin. This script analyzes
your database before you upgrade it and alerts you to any problems that might
endanger the successful upgrade of your database.

■ Upgrade the database. Follow the Oracle upgrade instructions for your specific
version and operating system. This step includes the creation of the new SYSAUX
tablespace, which is new in Oracle Database 10g. (This tablespace is described
in detail later, in the section “The SYSAUX Tablespace.”)

■ Check the component registry (DBA_REGISTRY) to make sure your upgrade
was successful.

■ Back up your new Oracle Database 10g database.

■ Run your test plan and validate your upgrade.

The Compatible Parameter Once you have upgraded to Oracle Database 10g,
the compatible parameter can be set no lower than 9.2.0. Thus, if you are upgrading
from 8.0.6, you need to set compatible to 9.2.0 before you can open your database
under Oracle Database 10g. The Oracle Upgrade manual (Oracle10g Upgrade Guide)
provides detailed instructions on setting the compatible parameter. Once you are
satisfied that the database can operate under Oracle Database 10g, you can set the
compatible parameter to 10.0. Note that, once you set the compatible parameter to 10.0,
you cannot set it back. This is different than in previous versions of Oracle. Also note
that the command alter database reset compatibility is now obsolete.

There are a number of other possible upgrade issues that you will need to deal
with depending on the database features that you are using. I strongly suggest that
you carefully review the Oracle Upgrade documentation, and that you test your
Oracle Database 10g upgrades several times before doing one for real in production.

One final upgrade thought. I suggest that you do not use any of the new Oracle
Database 10g features in a production environment until you have tested the feature
thoroughly. While Oracle does its best to regression test new features, there are always
a few kinks to be worked out in the beginning. If you find a new feature irresistible (and
after you read this book, I hope you do!), then by all means try it out. Test it over and
over to make sure it works the way it’s intended, and that it doesn’t have some nasty
impacts, like causing performance problems or causing your database to crash. Also,
check Oracle MetaLink, and even open an Oracle iTAR, before you use a new feature
that will be a prominent part of your design.

Other Upgrade Methods
The use of the Oracle exp/imp utilities is supported for migrating your Oracle database
data to Oracle Database 10g. You will use the export utility associated with the version
of the database you are currently on (e.g., 8.0.6) to create the dump file. Use the imp
utility from the 10g Oracle database to import the dump file created for the upgrade. The

Jonathan Says…
Remember that sql_trace (possibly started by a logon trigger that calls the packaged
procedure dbms_support.start_trace) is your best friend when you are testing.
Many of the enhancements and features that appeared in Oracle9i were supported
by PL/SQL packages and recursive SQL. Expect more of the same approach to
appear in version 10g.

If you switch on sql_trace when testing a feature, you may find out what Oracle
Database 10g is doing under the covers to support that feature and whether or not it
is suitable for your production system.

Another little trick for discovering hidden costs when you start to test new data
structures is to start with a clean schema, create an example of the new data structure,
and then query the USER_OBJECTS view to discover what hidden objects Oracle
has created to support that structure.

McGraw-Hill/Osborne Sample Chapter

10

Oracle upgrade manual provides a complete set of instructions on how to perform this
type of upgrade.

Finally, you can use the SQL*Plus copy command or the SQL create table as select
command to move your database data to a new Oracle Database 10g instance. Again, the
Oracle upgrade manual provides a complete set of instructions on how to perform this
type of upgrade.

Statistics Collection
Oracle Database 10g offers some new features to help you collect database statistics.
These new features include collection of data dictionary statistics, new behaviors
associated with the dbms_stats package, and new features related to monitoring tables
in the database.

Collecting Data Dictionary Statistics
The Rule Based Optimizer (RBO) is desupported with Oracle Database 10g. It’s still
there in Oracle Database 10g, but Oracle is moving away from it quickly and you will
find no bug fixes associated with it in future versions of the database. With desupport of
the RBO, it becomes even more important to address the question of collection of
database statistics.

Oracle Database 10g includes new statistics-gathering features. This includes the
ability to collect data dictionary statistics, which is now recommended as a best practice
by Oracle. Also, Oracle Database 10g includes new features that enhance the generation
of object level statistics within the database. Let’s look at these next.

Data Dictionary Statistics Collection
Oracle Database 10g is a big departure from previous releases of Oracle insofar
as Oracle recommends that you analyze the data dictionary. You can collect these
statistics by using either the dbms_stats.gather_schema_stats or dbms_stats.gather_
database_stats Oracle-supplied procedures, as shown here:

Exec dbms_stats.gather_schema_stats(’SYS’)

The gather_schema_stats and gather_database_stats procedures are not new in
Oracle Database 10g, but using them to collect data dictionary statistics is new, as
are some new parameters that are available with these procedures.

Oracle Database 10g also offers two new procedure in the dbms_stats
Oracle-supplied package. First, the dbms_stats.gather_dictionary_stats procedure
facilitates analysis of the data dictionary. Second the dbms_stats.delete_dictionary_ stats
procedure allows you to remove data dictionary stats. Here is an example of the use of
the dbms_stats.gather_dictionary_stats procedure:

exec dbms_stats.gather_dictionary_stats;

This example gathers statistics from the SYS and SYSTEM schemas as well as any
other schemas that are related to RDBMS components (e.g., OUTLN or DBSNMP).

McGraw-Hill/Osborne Sample Chapter

11

From a security perspective, any user with SYSDBA privileges can analyze the data
dictionary. However, non-SYSDBA user accounts must be granted the analyze any
dictionary system privilege to be able to analyze the data dictionary.

Gathering Fixed Table Statistics
A new parameter to the dbms_stats.gather_database_stats and dbms_stats.gather_
database_stats supplied procedures is gather_fixed. This parameter is set to false by
default, which disallows statistics collection for fixed data dictionary tables (e.g., x$
tables). Oracle suggests that you analyze fixed tables only once during a typical system
workload. You should do this as soon as possible after your upgrade to Oracle Database
10g, but again it should be under a normal workload. Here is an example of the use
of the gather_fixed argument within the dbms_stats.gather_schema_stats procedure:

Exec dbms_stats.gather_schema_stats(’SYS’,gather_fixed=>TRUE)

Yet another new procedure, dbms_stats.gather_fixed_objects_stats, has been
provided in Oracle Database 10g to collect object statistics on fixed objects. It also has
a brother, delete_fixed_objects_stats, which will remove the object statistics. Second
cousins and new Oracle Database 10g provided procedures include dbms_stats.export_
fixed_objects_stats and dbms_stats.import_fixed_ objects_stats. These allow you to
export and import statistics to user-defined statistics tables, just as you could with normal
table statistics previously. This allows your data dictionary fixed statistics to be exported
out of and imported into other databases as required. One other note: the dbms_stats
Oracle-supplied package also supports analyzing specific data dictionary tables.

When to Collect Dictionary Statistics
Oracle recommends the following strategy with regard to analyzing the data dictionary
in Oracle Database 10g:

1. Analyze normal data dictionary objects (not fixed dictionary objects) using
the same interval that you currently use when analyzing other objects. Use
gather_database_stats, gather_schema_stats, or gather_dictionary_stats to
perform this action. Here is an example:
Exec dbms_stats.gather_schema_stats(’SYS’,gather_fixed=>TRUE)

2. Analyze fixed objects only once, unless the workload footprint changes.
Generally, use the dbms_stats.gather_fixed_object_stats supplied procedure
when connected as SYS or any other SYSDBA privileged user. Here is an
example:
Exec dbms_stats.gather_fixed_objects_stats(’ALL’);

New DBMS_STATS Behaviors
Oracle has introduced some new arguments that you can use with the dbms_stats
package in Oracle Database 10g. The granularity parameter is used in several
dbms_stats subprograms (e.g., gather_table_stats and gather_schema_stats) to indicate

McGraw-Hill/Osborne Sample Chapter

12

the granularity of the statistics that you want to collect, particularly for partitioned tables.
For example, you can opt to only gather global statistics on a partitioned table, or you
can opt to gather global and partition-level statistics. The granularity parameter comes
with an auto option. When auto is used, Oracle collects global, partition-level, and
subpartition-level statistics for a range-list partitioned table. For other partitioned tables,
only global and partition-level statistics will be gathered.

A second granularity option, global and partition, will gather the global and
partition-level statistics but no subpartition-level statistics, regardless of the type of
partitioning employed on the table. Here are some examples of using these new options:

Exec dbms_stats.gather_table_stats(’my_user’,’my_tab’,granularity=>’AUTO’);
Exec dbms_stats.gather_table_stats(’my_user’,’my_tab’, -
granularity=>’GLOBAL AND PARTITION’);

New options are also available with the degree parameter, which allows you to
parallelize the statistics-gathering process. Using the new auto_degree option, Oracle
will determine the degree of parallelism that should be used when analyzing the table.
Simply use the predefined value, dbms_stats.auto_degree, in the degree parameter.
Oracle will then decide the degree of parallelism to use. It may choose to use either
no parallelism or a default degree of parallelism, which is dependent on the number
of CPUs and the value of various database parameter settings. Here is an example of
the use of the new degree option:

Exec dbms_stats.gather_table_stats -
(’my_user’,’my_tab’,degree=>dbms_stats.auto_degree);

Finally, the stattype parameter is a new parameter that allows you the option of
gathering both data and caching statistics (which is the default) or only data statistics or
only caching statistics. Valid options are all, cache, or data, depending on the type of
statistics you wish to gather. Here is an example of the use of the stattype parameter:

Exec dbms_stats.gather_table_stats -
(’my_user’,’my_tab’,stattype=>’ALL’);

New Table-Monitoring Behaviors
Oracle9i allows you to monitor a table’s usage. The monitoring process keeps track of
differential changes to the table. The dbms_stats package can be used to apply those
differential statistics to the table’s dictionary statistics, allowing the cost-based optimizer
to generate plans based on more current statistics.

Oracle Database 10g enables global table monitoring by default. This feature is
controlled via the statistics_level parameter (statistics_level was available in Oracle9i).
When statistics_level is set to TYPICAL (which is the default setting) or ALL, then
global monitoring is enabled. When the statistics_level parameter is set to BASIC, global
monitoring is disabled.

McGraw-Hill/Osborne Sample Chapter

13

Note that if global monitoring is enabled, you cannot disable it for specific tables. The
nomonitoring clause of the alter table command will appear to complete successfully,
but will have no effect in reality. Also, the monitoring clause of the alter table command
no longer has any impact on monitoring of tables. It’s kind of an all or nothing deal
these days!

Flushing the Buffer Cache
Prior to Oracle Database 10g, the only way to flush the database buffer cache was to
shut down the database and restart it. This was perhaps not the most graceful way of
performing this activity because it required shutting down applications and disconnecting
users, creating all sorts of mayhem (not that flushing the buffer cache in and of itself
can’t cause some short-term mayhem of its own!).

Oracle Database 10g now allows you to flush the database buffer cache with the alter
system command using the flush buffer_cache parameter, as shown in this example:

Alter system flush buffer_cache;

NOTE
I am not sure why you would want to flush the buffer cache. If you
can think of a good reason why, let me know!

Database Resource Manager New Features
The Database Resource Manager in Oracle Database 10g offers a few new features that
you need to be aware of:

■ The ability to revert to the original consumer group at the end of an operation
that caused a change of consumer groups

■ The ability to set idle timeout values for consumer groups

Jonathan Says…
When you start to plan your strategy for gathering statistics, remember this—you
probably don’t need the same level of statistics collection on every object in the
schema. Most (large) objects will give perfectly adequate results from a very small
sample size, a few objects will need larger samples, and a handful of columns may
need carefully considered histograms.

Although Oracle supplies a gather_schema_stats procedure, don’t worry if you
don’t have the time window to use it—you probably don’t need to. And remember,
if you create loads of unnecessary histograms, you could be creating a performance
problem—you pay for histograms through extra memory, CPU, and latch costs
during optimization.

McGraw-Hill/Osborne Sample Chapter

14

■ The ability to create mappings for the automatic assignment of sessions to
specific consumer groups

Each of these topics is discussed, in turn, in more detail in the following sections.

Reverting Back to the Original Consumer Group
Prior to Oracle Database 10g, if a SQL call caused a session to be put into a different
consumer group (for example, because a long-running query exceeded a SWITCH_TIME
directive value in the consumer group), then that session would remain assigned to the
new resource group until it was ended. Oracle Database 10g allows you to use the new
SWITCH_BACK_AT_CALL_END directive to indicate that the session should be reverted
back to the original consumer group once the call that caused it to switch consumer
groups (or the top call) is complete.

This is very useful for n-tier applications that create a pool of sessions in the database
for clients to share. Previously, after the consumer group had been changed, all
subsequent connections would be penalized based on the settings of the consumer group
resource plan. The new SWITCH_BACK_AT_CALL_END directive allows the session to
be reset, thus eliminating the impact to future sessions. Here is an example of the use of
this new feature:

EXEC DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'main_plan',
GROUP_OR_SUBPLAN => 'goonline', COMMENT => 'Online sessions', CPU_P1 => 80,
SWITCH_GROUP => 'ad-hoc', SWITCH_TIME => 3,SWITCH_ESTIMATE => TRUE,
SWITCH_BACK_AT_CALL_END=>TRUE);

In this case, I have created a plan directive that is a part of an overall plan called
MAIN_PLAN. This particular plan directive is designed to limit the impact of online
ad-hoc users (or perhaps applications that are throwing out a great deal of dynamic SQL
that’s hard to tune) if they issue queries that take a long time (in this example, 3 seconds).
This directive causes a switch to a consumer group called ad-hoc, which would likely
further limit CPU and might also provide for an overall run-time limit on executions in
this particular plan/resource group. Since I have included the SWITCH_BACK_AT_
CALL_END directive in this plan directive, the consumer group will revert back to the
original plan after the completion of the long-running operation.

Setting the Idle Timeout
Oracle Database 10g allows you to limit the maximum time that a session is allowed to
remain idle. The max_idle_time parameter allows you to define a maximum amount of
time that a given session can sit idle, as is shown in the upcoming example. PMON will
check the session once a minute and kill any session that has been idle for the amount
of time defined in the plan.

McGraw-Hill/Osborne Sample Chapter

15

EXEC DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'main_plan',
GROUP_OR_SUBPLAN => 'online', max_idle_time=>300,
comment=> ’Set max_idle_time’);

Creating Mappings for Automatic Assignment
of Sessions to Consumer Groups
The dbms_resource_manager.set_group_mapping procedure allows you to map a
specific consumer group to a given session based on either login or run-time attributes.
These attributes include:

■ The username

■ The service name

■ The client OS username

■ The client program name

■ The client machine

■ The module name

■ The module name action

You then have to determine what session attributes you want to map to a given
consumer group. In this example, I have mapped the client machine called tiger to the
resource consumer group LOW_PRIORITY:

Exec dbms_resource_manager.set_group_mapping
(DBMS_RESOURCE_MANAGER.CLIENT_MACHINE,‘tiger’,’low_priority’);

Thus, if anyone logs in to the database from the machine named tiger, they will be
assigned to the consumer group LOW_PRIORITY, which will have already been created.

Often times, there can be a number of mappings that apply to a given session,
and a priority has to be defined. This is done by using the procedure dbms_resource_
manager.set_mapping_priority. This example creates two mappings:

Dbms_resource_manager.set_group_mapping
(DBMS_RESOURCE_MANAGER.CLIENT_MACHINE, ‘tiger’,’low_priority’);
Dbms_resource_manager.set_group_mapping
(DBMS_RESOURCE_MANAGER.ORACLE_USER, ‘NUMBER_ONE’,’high_priority’);

In this case, anyone signing in from tiger is assigned to the LOW_PRIORITY consumer
group, but where will the user NUMBER_ONE be assigned? Well, right now it’s hard to
tell. So, to make sure that NUMBER_ONE is always set to be assigned to the high-priority
resource consumer group, I can use the provided procedure called dbms_resource_
manager.set_mapping_priority:

McGraw-Hill/Osborne Sample Chapter

16

Dbms_resource_manager.set_mapping_priority(ORACLE_USER=>1,
CLIENT_MACHINE=>2, EXPLICIT=>3, MODULE_NAME=>4, SERVICE_NAME=>5,
CLIENT_OS_USER=>6, CLIENT_PROGRAM=>7, MODULE_NAME_ACTION=>8);

This code will cause Oracle to prioritize consumer group selection based first on
username and then on the client machine name. So, now the user NUMBER_ONE will
always get the higher-priority consumer group assignment.

Be aware that regardless of consumer group assignments, a user must still be given
switching privileges into a given consumer group. If the user has not been granted such
privileges, then sessions will not be switched.

Scheduler Changes
Oracle Database 10g offers a brand new job-scheduling facility, known as The
Scheduler. The Scheduler is controlled via the new Oracle Database 10g supplied
package dbms_scheduler. This package replaces the dbms_job package that has been
around for some time.

Overview of The Scheduler
The new scheduler offers much added functionality over the dbms_job package. The
Scheduler enables you to execute a variety of stored code (such as PL/SQL), a native
binary executable, and shell scripts. The object that is being run by The Scheduler is
known as the program. The program is more than just the name; it includes related
metadata about the program, such as the arguments to be passed to it and the type
of program that is being run.

Different users can use a program at different times, eliminating the need to have to
redefine the program every time you wish to schedule a job. Programs can be stored in
program libraries, which allows for easy reuse of program code by other users.

Each program, when scheduled, is assigned to a job. A job can also just contain an
anonymous PL/SQL block instead of a program. The job is a combination of the program
(or anonymous PL/SQL block) and the schedule associated with the program, which defines
when the job is to run. Also associated with the job is other metadata related to the job,
such as the job class and the window or window group.

The job class is a category of jobs that share various characteristics, such as resource
consumer group assignments and assignments to a common, specific, service name. The
job class is related to the job window.

The job window, or window group, essentially allows the job to take advantage of
specific resource plans. For example, if the schedule for a job is for it to run every hour,
the job window will allow it to run under one resource group in the morning and a
different resource group in the evening. That way, you can control the resources the job
can consume at different times throughout the day.

Oracle provides two different interfaces into The Scheduler. The first is the
dbms_scheduler package and the second is through the Oracle Enterprise Manager (OEM).

McGraw-Hill/Osborne Sample Chapter

17

Practical Use of The Scheduler
There are a few steps to follow when you want to assign a job to The Scheduler:

■ Create the program (optional).

■ Create the job.

Creating a Program in The Scheduler
Creating a program is the optional first step when creating a scheduled operation. This
operation may actually take four steps:

1. Create the program itself.

2. Define the program arguments.

3. Create the job.

4. Define job arguments.

The following sections explain each of these steps in turn.

Creating the Program To create a program, so that you can schedule it, you use
the PL/SQL-supplied procedure dbms_scheduler.create_program. To use this package
in your own schema, you must have the create job privilege. To use it to create jobs in
other schemas, you need the create any job privilege. By default, a program is created
in a disabled state (which can be overridden by setting the enabled parameter of the
create_program procedure to TRUE). First, let’s look at the definition of the
dbms_scheduler.create_program procedure:

DBMS_SCHEDULER.CREATE_PROGRAM (
program_name IN VARCHAR2,
program_type IN VARCHAR2,
program_action IN VARCHAR2,
number_of_arguments IN PLS_INTEGER DEFAULT 0,
enabled IN BOOLEAN DEFAULT FALSE,
comments IN VARCHAR2 DEFAULT NULL);

It always helps to know what the various parameters are for, of course. So let’s look
at a description of the parameters for the create_program procedure:

Parameter Name Description

program_name Identifies the name of the program. This is an
internally assigned name, which represents the
program_action that will be executed.

program_type Identifies the type of executable being scheduled.
Currently, the following are valid values:
PLSQL_BLOCK, STORED_PROCEDURE,
and EXECUTABLE.

McGraw-Hill/Osborne Sample Chapter

18

Parameter Name Description

program_action Indicates the procedure, executable name, or PL/SQL
anonymous block associated with the program.

number_of_arguments Identifies the number of arguments required for the
program (ignored if program_type is PLSQL_BLOCK).

Enabled Indicates whether the program should be enabled
when created.

Comments Allows freeform comments describing the program or
what it does.

Here are some examples of the creation of programs:

BEGIN
dbms_scheduler.create_program(
program_name => ’delete_records’,
program_action => ’/opt/oracle/maint/bin/nightly_delete_records.sh’,
program_type => ’EXECUTABLE’, number_of_arguments=>2);

END;

In this example, I am creating a program called delete_records. It is an external
executable, a shell script in this case. The program is located in /opt/oracle/maint/
bin and called nightly_delete_records.sh. Note that Oracle does not check for
the existence of the program when the create_program procedure is executed. Thus,
you can create your program even if the underlying executable doesn’t exist.

You can create a program for an anonymous PL/SQL block as well, as demonstrated
in this example:

BEGIN
dbms_scheduler.create_program(

program_name => ’sp_delete_records’,
program_action => ’DECLARE

rec_count number;
BEGIN
DELETE FROM old_records
WHERE record_date < sysdate – 5;
rec_count:=sqlcommand%ROWCOUNT;
insert into records_removed

(date, table, how_many, job_ran) VALUES
(sysdate, ’OLD_RECORDS’, rec_count,
scheduler$_job_start);

COMMIT;
END;’,

program_type => ’EXECUTABLE’);
END;

McGraw-Hill/Osborne Sample Chapter

19

In the case of this anonymous block, I used one of several supplied special variable
names in my code (in this case, scheduler$_job_start). These variables are described
briefly in the following table:

Variable Name Description

scheduler$_job_name Provides the name of the job being executed

scheduler$_job_owner Provides the name of the owner of the job

scheduler$_job_start Provides the start time of the job

scheduler$_window_start Indicates the start time of the window associated
with the job

scheduler$_window_end Indicates the end time of the window associated
with the job

OEM also provides an interface to create programs that you can use if you prefer that
method.

You can drop a program with the dbms_scheduler.drop_program procedure, as
shown in this example:

Exec dbms_scheduler.drop_program(’delete_records’);

Defining the Program Arguments Many programs have arguments (aka
parameters) that need to be included when that program is called. You can associate
arguments with a program by using the dbms_scheduler.define_program_ argument
procedure. Using the previous program example, delete_records, I can add some
arguments to the program as follows:

BEGIN
dbms_scheduler.define_program_argument(
program_name => ’delete_records’,
argument_name => ’delete_date’,
argument_position=>1, argument_type=>’date’,
default_value=> ’to_char(sysdate - 5, ’’mm/dd/yyyy’’)’);
end;
/

To be able to call this program, you need the alter any job or create any job
privilege. Additionally, calling this problem does not change the state of the associated
job (enabled or disabled). You can replace an argument by simply calling the define_
program_argument procedure and replacing an existing argument position.

Creating the Job
To actually get The Scheduler to do something, which is kind of the idea, you need
to create a job. The job can either run a program that you have created (refer to the
previous section) or run its own job, which is defined when the job is defined. The job
consists of these principle definitions:

McGraw-Hill/Osborne Sample Chapter

20

■ The schedule This is when the job is supposed to do whatever it’s supposed to
do. The schedule consists of a start time, an end time, and an expression that
indicates the frequency of job repetition.

■ The associated job argument (or the what) This is what the job is supposed to
do. This can be a pre-created PL/SQL or Java program, anonymous PL/SQL, or
even an external executable (for example, a shell script or C program call).

■ Other metadata associated with the job This includes such things as the job’s
class and priority, job-related comments, and the job’s restartability.

Jobs are created with the dbms_scheduler.create_job package, as shown in this
example:

Exec dbms_scheduler.create_job(
job_name=>’CLEAR_DAILY’,
job_type=>’STORED_PROCEDURE’,
job_action=>’JOBS.SP_CLEAR_DAILY’,
start_date=>NULL,
repeat_interval=>’TRUNC(SYSDATE) + 1/24’,
comments=>’Hourly Clearout Job’);

This example creates a scheduled job that executes immediately and then will run every
hour thereafter. This job is assigned a name called CLEAR_DAILY. When The Scheduler
runs the job, a PL/SQL stored procedure called sp_clear_daily is executed.

Perhaps another example is in order. In this case, I will create a scheduled job that
fires off an external shell script:

Exec dbms_scheduler.create_job(
job_name=>’RUN_BACKUP’,
job_type=>’EXECUTABLE’,
job_action=>’/opt/oracle/admin/jobs/run_job.sh’,
start_date=>’to_date(’04-30-2003 20:00:00’,’mm-dd-yyyy hh24:mi_ss’),
repeat_interval=>’TRUNC(SYSDATE) + 23/24’,
comments=>’Daily Backup’);

The repeat_interval attribute defines how often and when the job will repeat. If the
repeat_interval is NULL (the default), the job executes only one time and then is
removed. When determining the interval, you have two options. First, you can use
the older PL/SQL time expressions for defining the program execution intervals.

Oracle Database 10g now offers a new feature, Calendar Expressions, which you
can use in lieu of the old PL/SQL time expressions. There are three different types of
components: the frequency (which is mandatory), the specifier, and the interval.
Frequencies indicate how often the job should run. The following frequencies are
available:

Yearly Monthly Weekly Daily

Hourly Minutely Secondly

McGraw-Hill/Osborne Sample Chapter

21

Additional parameters, the specifier and interval, define in more detail how
frequently the job should run.

Defining the Job Arguments If you are scheduling a job that is not associated with
a program, then that job may be a program that accepts arguments. If this is the case,
you need to use the dbms_scheduler.set_job_argument_value procedure. Executing this
procedure will not enable or disable any given job. Here is an example of setting some
parameters for a job. In this case, I am indicating to the RUN_BACKUP job that it should
include an argument of ‘TABLESPACE USERS’, which might indicate that the backup job
should back up the users tablespace.

exec dbms_scheduler.set_job_argument_value
(job_name =>’RUN_BACKUP’,
argument_name=>’BACKUP_JOB_ARG1’,
argument_value=>’TABLESPACE USERS’);

Other Job Scheduler Functionality
The new job scheduler also allows you to define job classes, which allow you to define a
category of jobs that share common resource usage requirements and other characteristics.
One job can belong to only one job class, though you can change the job class that a
given job is assigned to. Any defined job class can belong to a single resource consumer
group, and to a single service at any given time.

Job classes, then, allow you to assign jobs of different priorities. For example,
administrative jobs (such as backups) might be assigned to an administrative class that
is assigned to a resource group that allows for unconstrained activity. Other jobs, with
a lesser priority, may be assigned to job classes that are assigned to resource groups
that constrain the overall operational overhead of the job, so that those jobs do not
inordinately interfere with other, higher-priority jobs. Thus, job classes help you to
manage the amount of resources that a given job can consume.

To create a job class, you use the dbms_scheduler.create_job_class procedure. All
classes belong to the SYS schema, and to create one requires the manage scheduler
privilege. Here is an example of defining a job class:

exec dbms_scheduler.create_job_class(
job_class_name=>’CLASS_ADMIN’,
resource_consumer_group=>’ADMIN_JOBS’,
service=>’SERVCE_B’);

This job class will be called CLASS_ADMIN. It is assigned to a resource consumer group
(that will have already been created) called ADMIN_JOBS, which will no doubt give
administrative jobs pretty unfettered access to resources. This job class is also assigned
to a specific service, SERVICE_B, so the administrator can define which service the job
class is associated with.

McGraw-Hill/Osborne Sample Chapter

22

Once the job class is defined, you can define which jobs are members of that class
when you create the jobs. Alternatively, you can use the dbms_scheduler.set_ attribute
procedure to assign an existing job to that class.

User-Configurable Default Tablespaces
Oracle offers user-configurable default tablespaces in Oracle Database 10g. Once you
configure a default user tablespace, all new users will be assigned to that tablespace
rather than the SYSTEM tablespace. At the time this was written, this feature was not
available to test, but I thought you would like to know it’s coming.

Tablespace Groups and Multiple Default
Temporary Tablespaces
Oracle Database 10g now allows you to define tablespace groups, which are logical
groupings of tablespaces. This further allows you to assign temporary tablespaces to
those groups, and then assign this tablespace group as the default temporary tablespace
for the database. In essence, tablespace groups allow you to combine temporary
tablespaces into one tablespace pool that is available for use to the database.

Assigning Temporary Tablespaces
to Tablespace Groups
You can assign a temporary tablespace to a tablespace group in one of two ways. First,
you can assign it to a tablespace group when you create the tablespace via the create
tablespace command. Second, you can add a tablespace to a tablespace group via the
alter tablespace command. An example of each of these operations is listed next (note
that OMF is configured in this example):

Create temporary tablespace temp_tbs_01 tablespace group tbs_group_01;
alter tablespace temp_tbs_01 tablespace group tbs_group_02;

There is no limit to the number of tablespaces that can be assigned to a tablespace
group. The tablespace group shares the same namespace as normal tablespaces, so
tablespace names and tablespace group names are mutually exclusive. You can also
remove a tablespace from a group by using the alter tablespace command and using
empty quotes as an argument to the tablespace group parameter, as shown in this
example:

Alter tablespace temp3 tablespace group ’’;

McGraw-Hill/Osborne Sample Chapter

23

Defining a Tablespace Group as the
Default Temporary Tablespace
After you have created the tablespace group and assigned a set of tablespaces to that
group, you can assign that group of temporary tablespaces (or that tablespace group) as
the default temporary tablespace for the system, or as a temporary tablespace group for
specific users.

You can do this in the create database statement when you create the database, or
you can use the alter database statement to modify the temporary tablespace settings.
Using either statement, you simply define the tablespace group as the default tablespace,
as shown in this example:

Alter database default temporary tablespace tbs_group_01;

This has the effect of assigning multiple tablespaces as the default temporary
tablespace. Once you have assigned a tablespace group as the default temporary
tablespace group, you cannot drop any tablespace in that group.

So, now you can define more than a single tablespace as the database default
temporary tablespace; as a result, larger SQL operations can use more than one
tablespace for sort operations, thereby reducing the risk of running out of space. This
also provides more tablespace space, and potentially better I/O distribution for sort
operations and parallel slave operations that use temporary tablespaces. If a tablespace
group is defined as the default temporary tablespace, then no tablespaces in that group
can be dropped until that assignment has been changed.

You can assign a user to a tablespace group that might not be the default tablespace
group either in the create user or alter user statements, as shown in these examples that
assign the TBS_GROUP_01 tablespace to the user NO_PS:

Create user no_ps identified by gonesville
default tablespace dflt_ts temporary tablespace tbs_group_01;

alter user no_ps temporary tablespace tbs_group_02;

Jonathan Says…
Given the introduction of “bigfile” tablespaces (with a maximum size of 8 exabytes,
or roughly 8 million terabytes), you have to wonder if there is something more
subtle going on here than the declared intention of making more space available
for sorting, etc. So, if having multiple tablespaces is good for temporary space, are
there some types of systems whose characteristic activity means they should not
use “bigfile” tablespaces?

McGraw-Hill/Osborne Sample Chapter

24

Tablespace Group Data Dictionary View
A new view, DBA_TABLESPACE_GROUPS, is available to associate specific temporary
tablespaces with tablespace groups. The TEMPORARY_TABLESPACE column of the
*_users views will report either the temporary tablespace name or the temporary
tablespace group name that is assigned to the user. Here is an example of a query that
joins the DBA_USERS and DBA_TABLESPACE_GROUPS views together and gives you
a list of users who are assigned a tablespace group as their temporary tablespace name,
and all of the tablespaces that are associated with that group:

Select a.username, a.temporary_tablespace, b.tablespace_name
from dba_users a, dba_tablespace_groups b
Where a.temporary_tablespace in (select distinct group_name from
dba_tablespace_groups);

Renaming Tablespaces
You have been asking for it, I have been asking for it, and now it’s here! Oracle
Database 10g includes the ability to rename tablespaces. You use the alter tablespace
command with the rename to parameter, as shown in this example:

Alter tablespace production_tbs rename to prod_tbs;

Note that you cannot rename the system tablespace or the SYSAUX tablespace (which
is described later in this chapter). Another nice feature is that if the tablespace is an UNDO
tablespace, and you are using a server parameter file (SPFILE), Oracle will change the
UNDO_TABLESPACE parameter in the SPFILE to reflect the new UNDO tablespace name.

The ability to rename tablespaces has some great practical applications with
operations such as transportable tablespaces. Now, rather than having to drop the
existing tablespace before you can transport it in, you only need rename that tablespace.
Way to go Oracle!

Something to be aware of is that renaming a tablespace does not change the name
of the datafile in any way. For example, OMF uses the name of the tablespace (or part
of it) in the OMF datafile naming scheme, and frequently DBAs do the same when
they manually create a tablespace datafile. Renaming the tablespace will result in the
datafiles no longer reflecting the true name of the tablespace.

CAUTION
You should back up the control file as soon as possible after
renaming tablespaces within the database. If you do not,
depending on when the backup of the control file took place, a
divergence may exist between the tablespace names in the control
file and the actual tablespace names in the database. Refer to the
Oracle Database 10g documentation for more details on specific
recovery scenario responses.

McGraw-Hill/Osborne Sample Chapter

25

Dropping Databases
The drop database command can be used to drop your database. Oracle will drop the
database, deleting all control files and all datafiles listed in the control file. If you are
using a SPFILE, then Oracle will remove it as well. Only a user with SYSDBA privileges
can issue the statement and the database must be mounted (not open) in exclusive and
restricted mode. Here is an example of the use of the drop database command:

Drop database;

Larger LOBs
If you use LOBs in your database (NCLOB, BLOB, or CLOB), then you will be happy to
know that the limits on LOBs have been increased in Oracle Database 10g. The new
maximum limits are calculated at (4GB – 1 byte) * (the database block size). Thus, if the
database block size is 8KB, there is essentially a 32GB limitation on LOBs in that database.
Note that Bfiles are limited to 4GB in size. Load ‘em up folks, its ready to rumble!

The SYSAUX Tablespace
The SYSAUX tablespace is a new feature and required component in Oracle Database
10g. This section first discusses the SYSAUX tablespace and then reviews some
Oracle-supplied procedures that allow you to perform maintenance tasks on the
SYSAUX tablespace.

Introducing the SYSAUX Tablespace
The SYSAUX tablespace is a secondary tablespace for storage of a number of database
components that were previously stored in the SYSTEM tablespace. It is created as a
locally managed tablespace using automatic segment space management.

Previously, many Oracle features required their own separate tablespaces (such as
the RMAN recovery catalog, Ultra Search, Data Mining, XDP, and OLAP). This increases
the management responsibility of the DBA. The SYSAUX tablespace consolidates these
tablespaces into one location, which becomes the default tablespace for these Oracle
features.

When you create an Oracle database, Oracle creates the SYSAUX tablespace for you
by default. If you are using OMF, then the tablespace is created in the appropriate OMF
directory. If you use the sysaux datafile clause in the create database statement, then the
SYSAUX tablespace datafile(s) will be created in the location you define. Finally, if no
sysaux datafile clause is included and OMF is not configured, Oracle creates the
SYSAUX tablespace in a default location that is OS-specific. Here is an example of
a create database statement with the sysaux datafile clause in it:

CREATE DATABASE my_db
DATAFILE ’c:\oracle\oradata\my_db\my_db_system_01.dbf’ SIZE 300m
SYSAUX DATAFILE ‘c:\oracle\my_db\my_db_sysaux_01.dbf’ SIZE 100m
DEFAULT TEMPORARY TABLESPACE dtemp_tbs tempfile
’c:\oracle\my_db\my_db_temp_01.dbf’ SIZE 100m

McGraw-Hill/Osborne Sample Chapter

26

UNDO TABLESPACE undo_tbs_one DATAFILE
’c:\oracle\my_db\my_db_undo_tbs_one_01.dbf’ SIZE 100m;

As stated earlier in this chapter, when you migrate to Oracle Database 10g, you
need to create the SYSAUX tablespace as a part of that migration. You do this after
mounting the database under the new Oracle Database 10g database software. Once
you have mounted it, you should open the database in migrate mode with the startup
migrate command. Once the database is open, you can create the SYSAUX tablespace.
Here is the create tablespace statement that you would use to perform this operation:

CREATE TABLESPACE sysaux

DATAFILE ’c:\oracle\oradata\my_db\my_db_sysaux_01.dbf’ SIZE 300m
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

The SYSAUX tablespace must be created with the attributes shown in the preceding
example. The following restrictions apply to the usage of the SYSAUX tablespace in
Oracle Database 10g:

■ When migrating to Oracle Database 10g, you can create the SYSAUX
tablespace only when the database is open in migrate mode.

■ Also, when migrating to Oracle Database 10g, if a tablespace is already
named SYSAUX, you will need to remove it or rename it while you are
in migrate mode.

■ Once you have opened your Oracle Database 10g database, you cannot
drop the SYSAUX tablespace. If you try, an error will be returned.

■ You cannot rename the SYSAUX tablespace during normal database operations.

■ The SYSAUX tablespace cannot be transported to other databases via
Oracle’s transportable tablespace feature.

Once the SYSAUX tablespace is in place and the database has been upgraded, you
can add or resize datafiles associated with a SYSAUX tablespace just as you would any
other tablespace through the alter tablespace command, as shown in this example:

ALTER TABLESPACE sysaux ADD DATAFILE
’d:\oracle\oradata\my_db\my_db_sysaux_01.dbf’ SIZE 200M;

Managing Occupants of the SYSAUX Tablespace
Each set of application tables within the SYSAUX tablespace is known as an occupant.
Oracle provides some new views to help you monitor space usage of occupants within
the SYSAUX tablespace and some new procedures you can use to move the occupant
objects in and out of the SYSAUX tablespace.

First, Oracle provides a new view, V$SYSAUX_OCCUPANTS, to manage occupants
in the SYSAUX tablespace. This view allows you to monitor the space usage of occupant
application objects in the SYSAUX tablespace, as shown in this example:

SELECT occupant_name, space_usage_blocks FROM v$sysaux_occupants;

McGraw-Hill/Osborne Sample Chapter

27

In this case, Oracle will display the space usage for the occupants, such as the RMAN
recovery catalog.

If you determine that you need to move the occupants out of the SYSAUX tablespace,
then the MOVE_PROCEDURE column of the V$SYSAUX_OCCUPANTS view will
indicate the procedure that you should use to move the related occupant from the
SYSAUX tablespace to another tablespace. This can also be a method of “reorganizing”
your component object tables, should that be required.

Automated Storage Management
Oracle Database 10g introduces Automated Storage Management (ASM), a service that
provides management of disk drives. ASM can be used on a variety of configurations,
including Oracle9i RAC installations. ASM is an alternative to the use of raw or cooked
file systems. ASM offers a number of features, including:

■ Simplified daily administration

■ The performance of raw disk I/O for all ASM files

■ Compatibility with any type of disk configuration, be it JBOD or complex SAN

■ Use of a specific file-naming convention to name files, enforcing an
enterprise-wide file-naming convention

■ Prevention of the accidental deletion of files, since there is no file system
interface and ASM is solely responsible for file management

■ Load balancing of data across all ASM managed disk drives, which helps
improve performance by removing disk hot spots

■ Dynamic load balancing of disks as usage patterns change and when additional
disks are added or removed

■ Ability to mirror data on different disks to provide fault tolerance

■ Support of vendor-supplied storage offerings and features

■ Enhanced scalability over other disk-management techniques

ASM can work in concert with existing databases that use raw or cooked file
systems. You can choose to leave existing file systems in place or move the database
datafiles to ASM disks. Additionally, new database datafiles can be placed in either ASM
disks or on the preexisting file systems. Databases can conceivably contain a mixture of
file types, including raw, cooked, OMF, and ASM (though the management of such a
system would be more complex).

The details of implementing and managing ASM are significant and would consume
more than a few chapters. Review the Oracle Database 10g documentation for more
details on this new Oracle feature.

McGraw-Hill/Osborne Sample Chapter

28

