

Multi-Master
Replication

CHAPTER

6

In this chapter we will explore the most powerful type of replication that
Oracle offers, Multi-Master replication (MMR). We’ll look at the features of
MMR and what it can offer you before mapping the steps involved in
planning MMR replication. We’ll then be ready to see an example of MMR
replication in action. Finally, we will look at various MMR maintenance
issues that you will want to be aware of.

An Introduction to Multi-Master Replication
You have already seen how to create and use read-only and updatable
materialized views. They offer the powerful ability to replicate data in tables
across separate databases. With multi-master replication, you can replicate
more than just database tables. You can replicate:
• Tables
• Indexes
• Procedures, functions, and triggers
• Packages
• User-defined types (Oracle9i)

As always, there are plusses and minuses to using multi-master replication.
The positive benefits of MMR include the following:

Replicates more objects, including user-defined objects.
Updates or modifies the objects being replicated. Adding a column to a table
at the master definition site can be replicated to other master sites.
Replicates with any number of other databases. Any master site can replicate
with other master sites, updatable Mview sites, and read-only Mview sites.

However, there are some downsides such as:
• Potentially large network bandwidth requirements. Not only does multi-

master push and pull changes between sites, it also sends
acknowledgements and quite a bit of administrative data.

• Reduced Performance. Complexity and robustness comes at a price.
MMR involves the use of triggers and procedures, and this can result in a
database performance hit. Depending on how much data you are
replicating, this performance hit can be substantial.

• Significant increases in administration requirements. When problems
appear in the database, the DBA must insure that replication is not the
cause or that the cause is not replicated to other databases. Database
performance tuning and problem resolution becomes more complicated
by an order of magnitude.

• Database changes require additional planning. Rolling out a new version
of an application can be much more difficult. Each new version will
require revisiting the design of the replication.

The considerations above should reinforce the earlier recommendation not
to implement a higher level of replication than you need.

Multi-master replication is powerful, and it is complicated to create and
monitor the replication environment. Because of this complexity, multi-master
replication requires some additional planning.

Planning Multi-Master Replication
There are a number of considerations when planning a MMR site. First, you
need to decide what you are going to replicate. Then you need to configure
your tables for replication.

Begin your preparation by deciding what data needs to be replicated. Because
of the bandwidth requirements to support multimaster replication, you should
replicate only those objects that are required at the remote sites. Again, only use
MMR on those objects that require MMR.

A master definition site can contain any number of master groups. The
criterion for grouping replication objects into groups is to insure data integrity.
If different objects replicate to different master sites, they should be placed in
separate groups. Unlike updatable Mviews, every object in a master group will
replicate to all other master sites that support that group.

Configuring Your Tables For Replication
Before you can start replicating tables with MMR, you need to make sure
your table’s logical design will support MMR.

Let’s take a look at the following configuration issues:
Establishing primary keys
Establishing foreign keys
Establishing database parameters
Validating that the replication packages are installed
Creating replication administration accounts
Creating database links
Creating push and purge jobs

Configuring Primary Keys

To replicate tables, the database must identify rows uniquely. This is normally
accomplished by using primary keys. If a table does not have a primary key
defined, you can identify a column or set of columns to uniquely identify rows.
You need to understand that defining a row or set of rows essentially defines a
primary key on that table. We always recommend that you define primary keys
on all tables used for replication to avoid confusion later on.

Using Sequences to Create Primary Keys
If a table simply has no row or group of rows that uniquely identifies it, you
will need to use a sequence to establish the primary key. The sequence creates a
special type of primary key known as a pseudo key (or surrogate key).

Using sequences as primary keys introduces a data integrity problem, as
multiple sites add rows to the table. If every site starts the sequence at 1, the
first row will contain a key of “1”. When another site adds a row it will also
assign a key of “1”. This will create a key conflict that must be remedied.

There are two easy ways to avoid this conflict. One is to have each master site
begin the sequence at a different number. For example Site 1 starts a 1, Site 2
starts at 100,000, and Site 3 starts at 200,000. For the first 99,999 rows inserted
at one site this plan works. However, the 100,000th row from any site will
create a key conflict.

Another method is for each site to start all the sequences at 1, but to
concatenate the site name to the key. Site NAVDB would thus insert rows
with the primary key being NAVDB1, NAVDB2, and so forth. The MYDB
site would use MYDB1, MYDB2, and so forth. This method provides a more
flexible solution, especially if additional master sites may be added at a later

date. Conflict resolution is covered in greater detail in Chapter 7, Conflict
Resolution.

A table with a primary key defined will have a primary key index that the
database uses to enforce the constraint. This index may be defined by the user
or created by the database. When you add the table to the replication group,
you do not have to include the primary key index. When the table is replicated
to another master site, the remote site will automatically build the primary key
index.

Foreign Keys
Foreign keys are used to enforce referential integrity. Normally, an index is
created on the foreign key column of the child table to keep from having to
execute a full table scan on the child table every time the parent table is
updated. By adding the foreign key index to the master replication group, you
do not have to replicate the child table and can still enforce the referential
integrity. An update to the child table will update the foreign key index, which
is replicated to the remote sites. However, if you replicate a child table, you
must replicate the parent to maintain the integrity.

Database Parameters
The only additional change to the database init.ora parameters from updatable
materialized view replication is to add an additional 80M to the shared pool size
on all the master sites. Below is a quick synopsis of init.ora changes to support
multi-master replication.

Parameter Name Default
Value

Recommended Value

COMPATIBLE Depends on
the version
of Oracle
that you are
using.

Set compatible to the
version of Oracle that
you are using in order
to use all replication
features of that
version of the
database

DB_DOMAIN .WORLD This is the extension
component of the
local databases Global

Name. If not defined,
it will default to
“.WORLD”

DISTRIBUTED
_
TRANSACTIO
NS

.25 * the
parameter
setting for
transactions

Add 5 + 2 per master
to the existing
value. Note this is
obsolete in Oracle9i
and later.

GLOBAL_
NAMES

FALSE GLOBAL_NAMES must be
set to TRUE in each
database that will be
involved in advanced
replication.

JOB_QUEUE_
PROCESSES

0 This parameter must be
set to a value of at
least one. Higher
values will allow more
parallel replication
of objects. We
recommend 3 + 1 per
additional master.

OPEN_LINKS 4 OPEN_LINKS defines
the number of
concurrent database
links that are
required for a given
database. This
parameter needs to
be configured for an
intial setting of 4
+ 2 additional links
for each master
site.

PARALLEL_
AUTOMATIC_
TUNING

FALSE Oracle9i offers this
parameter to help
establish the
correct level of
parallelism. Set to
TRUE to allow Oracle
to determine the
best configuration
for parallel
operations.

PARALLEL_
MAX_
SERVERS

Derived
based on the
parameters:
• CPU_CO

UNT
• PARALL

EL_

Only important if
you need parallel
propagation, which
is recommended. You
should configure
this parameter’s
value high enough to
allow sufficient
parallel servers to

• AUTOMA

TIC_

• TUNING
• PARALL

EL_

• ADAPTI
VE_

• MULTI_
USER

be started.
Generally, the
default is
sufficient.

PARALLEL_
MIN_
SERVERS

0 Set this value to
the number of
parallel streams
that you are
expecting. We
suggest 2.

PROCESSES Derived
from the
value of the
parameter
parallel_max
_servers

Add at least 12 to
the current value.

REPLICATION
_DEPENDEN
CY_TRACKIN
G

TRUE Should be set to the
default value.

SHARED_POO
L_SIZE

OS
Dependent

Add at least 80m to
the shared pool for
most MMR replication
instillations.

Verify the Replication Packages Are Loaded
As with all forms of advanced replication, the replication packages must be
valid. Ask SYS or SYSTEM to execute the following query to identify
invalid objects in the database.

SELECT count(*)
FROM dba_objects
WHERE status = ‘INVALID’
AND owner IN (’SYS’, ’SYSTEM’);

For additional information concerning installing and verifying the replication
packages, refer to Chapter 2, Preparing to Use Replication.
Remember that the user repadmin administers each master site. Make sure
that you are working on the correct database site when conducting
maintenance or other administration tasks.

Creating the User Repadmin
Just as with updatable Mviews, the replication administrator is a user called
repadmin. The repadmin user is created in the same way and granted the
same privileges on all master sites. Passwords can be different at each site
for additional security.

create user repadmin identified by repadmin;
grant connect, resource to repadmin;
execute dbms_repcat_admin.grant_admin_any_schema(‘repadmin’);
grant comment any table to repadmin;
grant lock any table to repadmin;
execute dbms_defer_sys.register_propagator(‘repadmin’);

Normally, repadmin is the administrator, receiver, and the propagator. These
are three distinct functions:

The administrator maintains the master group, adds or removes objects, etc.
The propagator is responsible for pushing items in the deferred transaction
queue to all other master sites.
The receiver takes items that have arrived in the deferred transaction queue
and applies them to the local objects.

Oracle recommends (and we agree!) that you use repadmin to perform all
three tasks when establishing your replication environment. For additional
security, you can establish a separate user as the receiver and propagator,
similar to the way repproxy was used in Chapter 4, Updatable Materialized
Views. When you use separate users to perform these tasks, you will
implement either the trusted or untrusted security model.

Trusted and Untrusted Security Models

If you decide to create a separate user as the propagator and/or the receiver,
you can implement either the trusted or untrusted security model. The trusted

model allows the propagator/receiver to support all master groups on all
systems. The untrusted model assigns specific groups to a receiver and the
receiver only has access to those specific groups. Regardless of the model you
choose, there are a few rules that can not be violated:

• A master site can have only one propagator.
• A propagator has the “execute any procedure” grant.
• A master site can have multiple receivers.
• A master group can have only one receiver per master site.
• A receiver is not granted “execute any procedure”.

So there are three main options for establishing our replication admin users:

 The repadmin does it all approach
 The trusted model
 The untrusted model

Let’s look at each of these in a bit more detail next.

Repadmin Does All - The recommended approach

Most multimaster replication uses one admin user, repadmin, who acts as
administrator, propagator, and receiver. Since repadmin is a propagator, it has
the “execute any procedure” grant, and therefore has access to any procedure
in the database, regardless of whether it is part of replication. Repadmin is on
every master site with these privileges and has access to all replication groups,
objects, and procedures.

Trusted Model - Separate User for each Task

In the trusted model, there are three users that each perform a separate task.
Repadmin administers the replication, but since he is not a propagator, he is
not granted “execute any procedure”. Another user, we’ll call him repprop, is
the propagator. This user has the “execute any procedure” privilege only on
his master site, and he has no access to anything on other master sites. A third
user we’ll call reprecv, is defined as the receiver for only that master site.
Reprecv is the receiver for all master groups on that master site. This model
works well when all master groups are propagated to all master sites. There is
no reason to define multiple receivers since they will each have access to all
master groups on the site.

Untrusted Model - Separate User for each Task, Multiple Recievers

The difference between the trusted and untrusted model is that in the untrusted
model all master groups are not replicated to all master sites. Since there is
only one propagator per master site, and he will try to replicate all the master
groups to all the master sites, it is the receiver that determines which master
groups are applied at each master site.

In Figure 6.1 the master definition site has three master groups.
REP_GROUP1 replicates with master sites A and C. REP_GROUP2
replicates with master sites A, C, and D. This configuration can use a single
administrator (repadmin performs all the tasks) on the master definition site
and on master site A. But master sites B, C, and D must implement the
untrusted model to limit the master groups each site replicates.

Fig 6.1: Untrusted Security Model

Master site B will implement a receiver that only receives REP_GROUP3.
Master site C will implement a receiver that only receives REP_GROUP1 and
REP_GROUP2. Master site D will implement a receiver that only receives
REP_GROUP2 and REP_GROUP3.

Add multiple master definition sites and you can see that multi-master
replication can become quite complicated. One significant advantage of both

the trusted and untrusted models is that no user has the “execute and
procedure” grant on a remote site. All three users only have grants to their
own master site.

Creating the Trusted and Untrusted Models
Let’s create an example of a trusted model. Here is the SQL used to create
the different user accounts. You will execute this SQL on all master sites:

connect system/?????

create user repadmin identified by repadmin;
grant connect, resource to repadmin;
execute dbms_repcat_admin.grant_admin_any_schema(
 ’repadmin’);
grant comment any table to repadmin;
grant lock any table to repadmin;

create user repprop identified by repprop;
grant connect, resource to repprop;
execute dbms_defer_sys.register_propagator(
 ’repprop’);

create user reprecv identified by reprecv;
grant connect, resource to reprecv;
execute dbms_repcat_admin.register_user_repgroup(username => ’reprecv’,
privilege_type => ’receiver’, list_of_gnames => NULL);

Here, we created the three users, each having separate tasks, and none having
access to remote sites.

If you want to implement the untrusted model, create repadmin and repprop,
just as we did in the previous example. Then create two master groups and the
receiver. The master group must exist before making a user a receiver. In this
example, we register user reprecv as a receiver for the master groups
REP_GROUP2 and REP_GROUP3.

connect system/?????

create user repadmin identified by repadmin;
grant connect, resource to repadmin;
execute dbms_repcat_admin.grant_admin_any_schema(
 ’repadmin’);
grant comment any table to repadmin;
grant lock any table to repadmin;

create user repprop identified by repprop;

grant connect, resource to repprop;
execute dbms_defer_sys.register_propagator(
 ’repprop’);

create user reprecv identified by reprecv;
grant connect, resource to reprecv;

-- First create the groups.
execute dbms_repcat.create_master_repgroup(
 gname=> ’REP_GROUP2’);

execute dbms_repcat.create_master_repgroup(
 gname=> ’REP_GROUP3’);

-- Now register the reciever.
execute dbms_repcat_admin.register_user_repgroup(
 username => ’reprecv’,
 privilege_type => ’receiver’,
 list_of_gnames => ‘REP_GROUP2, REP_GROUP3’);

Finally, we need to discuss the user who owns the data being replicated. In
this example, we are going to replicate the PUBS schema from the
NAVDB.WORLD to the PUBS schema in MYDB.WORLD. The PUBS
schema on the remote sites will start out empty. No special grants are
required for the schema owner.

pubs_db.sql

The PUBS schema is detailed in the appendix and available in the code depot.

Creating Database Links
The next step in preparing for multimaster replication is establishing the
database links. Links must be established in both directions between master
sites. Database links are covered in Chapter 2, Preparing To Use
Replication. Here, we are going to create two private links between the two
repadmin users.

connect repadmin/repadmin@navdb.world

create database link MYDB.WORLD
 connect to repadmin identified by repadmin
 using ’MYDB.WORLD’;

connect repadmin/repadmin@mydb.world

create private database link NAVDB.WORLD
 connect to repadmin identified by repadmin

 using ’NAVDB.WORLD’;

If there are other master sites in the replication setup, create links in both
directions to all other master sites. Note that this is different from the
previous forms of replication with materialized views. Since MMR is a two-
way form of replication, you need database links going in both directions.

If you are using either the trusted or untrusted model (discussed above), you
must create the database links from the local propagator to the registered
receiver at the remote site. Repadmin does not need a database link if he is
not acting as a propagator or receiver. Here, we are creating the database
links to support the examples later in this book:

connect repprop/repprop@navdb.world

create database link MYDB.WORLD
 connect to reprecv identified by reprecv
 using ’MYDB.WORLD’;

connect repprop/repprop@mydb.world

create database link NAVDB.WORLD
 connect to reprecv identified by reprecv
 using ’NAVDB.WORLD’;

You only need to link each master site with one paired master site (though
from a HA redundancy point of view this may be desirable). Each master
site does not need to be linked to all other master sites.

Fig 6.2 Linking Master Sites

Database links can also be created in Oracle Enterprise Manager. Please
refer to Chapter 2, Preparing To Use Replication, for additional details.

Creating Push/Purge Jobs
All changes to replication objects are applied at the local site and placed in
the deferred transaction queue. We need a job to periodically push those
changes to other master sites. We also need a job to remove the changes
from the transaction queue after they have been pushed.

These two tasks are split into two jobs to increase efficiency. The push
needs to happen as quickly and efficiently as possible. The purge needs to
happen often enough to keep the queue manageable. We create the
push/purge jobs using the schedule_push and schedule_purge procedures in the
Oracle supplied dbms_defer_sys package. We will push every minute and
purge every hour. If the system has a high transaction rate, you might want
to purge more often.

 MM_PushPurge.sql

-- Add jobs to NAVDB
connect repadmin/repadmin@navdb

begin
 dbms_defer_sys.schedule_push(
 destination => 'MYDB.WORLD',
 interval => 'SYSDATE + 1/(60*24)',
 next_date => sysdate,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 1);
end;
/

begin
dbms_defer_sys.schedule_purge(
 next_date => sysdate,
 interval => 'sysdate + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
end;
/

-- Add jobs to MYDB
connect repadmin/repadmin@mydb

begin
 dbms_defer_sys.schedule_push(
 destination => 'NAVDB.WORLD',
 interval => 'SYSDATE + 1/(60*24)',
 next_date => sysdate,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 1);
end;
/

begin
dbms_defer_sys.schedule_purge(
 next_date => sysdate,
 interval => 'sysdate + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
end;
/

Although there is no way to create purge/push jobs in OEM, you can edit
them. Under the Distribution->Advanced Replication -> Schedule tabs, you
will find both the push and purge jobs. Modify them by selecting the edit
button or changi the parameters and selecting apply. Below, we changed the
push job to execute every 10 seconds.

Fig 6.3 OEM Edit Push Job

Now that we have determined what we want to replicate, it is time to create
the Master Definition Site on NAVDB.WORLD and then replicate it on
MYDB.WORLD. This can be done using the command line or with Oracle
Enterprise Manager.

Setting Up MMR – By Example
In this section, we’ll demonstrate how to set up MMR with an example. Let’s
become a little more familiar with the master definition site before creating
the master replication group.

The Master Definition Site
The master definition site is the “home base” for a master group. It
contains the base objects that are replicated to the remote sites. For our
example, the master definition site is NAVDB and the remote master site is
MYDB.

Once created, the master definition site will automatically replicate itself to
the new master site(s). There can be only one master definition site for a
replicated object. All changes to a replicated object are performed at the
master definition site and propagated to all other master sites.

Within a replication environment there can be multiple master definition
sites (Figure 6.4). For example, the PUBS schema could be replicated in
master group REP_GROUP1 from master definition site A while the
SCOTT schema is replicated in REP_GROUP2 from master definition site
B. Both sites are master definition sites but on separate objects.

Fig 6.4 Multiple Master Definition Sites

Create the Master Replication Group
The master replication group contains all the objects that will be replicated.
If the master group is going to also support updatable materialized views,
you will need to insure that materialized view logs exist on those tables
before adding them to the master group. The example will create a master
replication group and add three tables, author, book_author, and book. The
script MM_MasterGroup.sql in the code depot will replicate the entire
schema.

 MM_MasterGroup.sql

Here is an example of the creation of a master replication group called
GROUP1.

connect repadmin/repadmin@navdb

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPGROUP(
 gname => '"GROUP1"',
 qualifier => '',
 group_comment => '');
END;
/

Adding Tables to the Master Replication Group

Next, we want to add our AUTHOR table from the PUBS schema. We use
the create_master_repobject procedure of the dbms_repact package for this, as
seen in this example:

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 gname => '"GROUP1"',
 type => 'TABLE',
 oname => '"AUTHOR"',
 sname => '"PUBS"');
END;
/

Now let’s add the remaining two tables.

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 gname => '"GROUP1"',
 type => 'TABLE',
 oname => '"BOOK"',
 sname => '"PUBS"');
END;
/
BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 gname => '"GROUP1"',
 type => 'TABLE',
 oname => '"BOOK_AUTHOR"',
 sname => '"PUBS"');
END;
/

When executing the above code, you might receive the following errors:

SQL> BEGIN
 2 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 3 gname => '"GROUP1"',
 4 type => 'TABLE',
 5 oname => '"BOOK"',
 6 sname => '"PUBS"',
 7 use_existing_object=>TRUE);
 8 END;
 9 /
BEGIN
*
ERROR at line 1:
ORA-23309: object "PUBS"."BOOK" of type TABLE exists
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 105
ORA-06512: at "SYS.DBMS_REPCAT_MAS", line 2552
ORA-06512: at "SYS.DBMS_REPCAT", line 562
ORA-06512: at line 2

The error message indicates that you have already set up the given table for
some form of replication. This is very possible if you have run previous
examples from this book. We can clear this problem by using the
delete_master_repobject procedure of the dbms_repcat supplied procedure, as seen
in this example:

exec dbms_repcat.drop_master_repobject('PUBS','BOOK_AUTHOR','TABLE');

If Your Tables Don’t Have a Primary Key

Suppose in the example above that the BOOK table has a defined primary
key but the other two tables do not. We must tell Oracle how to uniquely
identify rows in the author and book_author tables.

BEGIN
 DBMS_REPCAT.SET_COLUMNS(
 sname => '"PUBS"',
 oname => '"AUTHOR"',
 column_list => '"AUTHOR_KEY"');
END;
/
BEGIN
 DBMS_REPCAT.SET_COLUMNS(
 sname => '"PUBS"',
 oname => '"BOOK_AUTHOR"',

 column_list =>
 '"AUTHOR_KEY","BOOK_KEY"');
END;
/

We know that
authors are

uniquely
identified by the

author_key and that in book_author, unique rows are determined by the two
columns author_key and book_key. What we have actually done is define two
quasi-primary keys on those two tables. Any row that violates these keys will
result in a key conflict, which must be resolved. Note this is not the same as
an actual primary key. No index is created and you can insert duplicate
values in the table all you want. So, it’s generally much preferable to just
define the primary key on the table if at all possible.

Generate Replication Support
It’s time to generate replication support for the three tables with the
procedure dbms_repcat.genrate_replication_support. This creates the objects,
triggers, procedures, etc. required for Oracle to support replication. Here is
an example:

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT(
 sname => '"PUBS"',
 oname => '"AUTHOR"',
 type => 'TABLE',
 min_communication => TRUE,
 generate_80_compatible => FALSE);
END;
/
BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT(
 sname => '"PUBS"',
 oname => '"BOOK"',
 type => 'TABLE',
 min_communication => TRUE,
 generate_80_compatible => FALSE);
END;
/
BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT(
 sname => '"PUBS"',
 oname => '"BOOK_AUTHOR"',
 type => 'TABLE',
 min_communication => TRUE,

 Be careful with spaces inside of parameters
contained within quotes. It’s easy to make a mistake, for
“author” is not the same as “author “.

 generate_80_compatible => FALSE);
END;
/

Check the view dba_repcatlog for errors.

SELECT COUNT(*)
FROM dba_repcatlog;

This view should be empty. If not, wait until it is empty before continuing.
Once you have dealt with any errors appearing in dba_repcatlog, start
replication support.

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY(
 gname => '"GROUP1"');
END;
/

At this point, the master definition site is ready to replicate GROUP1 to
other master sites.

Adding Additional Master Sites
Once the master definition site has created and populated a master
replication group, it is relatively easy to add a master site. Before adding a
new master site you must complete the steps outlined in the planning section
of this chapter. The repadmin user must be created and have the
appropriate grants and be defined as the propagator. The database links
must be created and functioning, along with the push/purge jobs. Once this
has been accomplished, you are ready to add the new master site.

The script MM_AddMaster.sql in the code depot will add the
MYDB.WORLD site to the replication scheme. It is run from the master
definition site only!

Whenever you add a master site, you must suspend replication support on
the master definition site.

 MM_AddMaster.sql

connect repadmin/repadmin@navdb

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY(
 gname => '"GROUP1"');
END;
/

This command will stop replication support, not only on the master

ow add the new master site.

definition site, but also on every other master site in the replication scheme.
It also places all objects in the master group (at all master sites) in read-only
status to maintain data integrity.

N

BEGIN
 DBMS_REPCAT.ADD_MASTER_DATABASE(
 gname => '"GROUP1"',

master => ‘MYDB.WORLD’);
END;
/

This command will replicate all objects in GROUP1 to the MYDB.WORLD

o complete the process, restart replication support.

database.

T

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY(
 gname => '"GROUP1"');
END;
/

eplication activity will restart on all master sites.

ote that all activity took place on the master definition site.

dding additional master just repeats this process:

 jobs

R

N
Dbms_recat.add_master_site took care of creating the replicated objects in the
PUBS schema on MYDB.WORLD.

A
Prep the new master site
Create repadmin user
Create database links
Create the push/purge
At the master definition site

Stop replication activity
 Add the new master site

y

dding additional master sites is even easier in OEM.

 Resume replication activit
At both sites – verify and test

A

Fig 6.5 OEM Master Group Status Page

Log on to the master definition site (NAVDB) as repadmin and navigate
down to REP_GROUP2. Replication activity is running (normal), so you
need to stop the replication activity by clicking the “Submit Stop Request”
button. Select the Master Sites tab at the top of the screen and select Add.
This will bring up the “Add master site to the group” window (Figure 6.6).

Fig 6.6 OEM Master Group Add Master Site

Since multi-master replication requires the use of global names, the database
links to remote master sites will be names for the site. Select “All database
links” to display available links. For our example, select MYDB.WORLD
and click OK. The next window allows you to change the propagation
methods (Figure 6.7). We will keep the defaults for our example.

Fig 6.7 OEM Master Group Add Destination

If you select OK, the selection will apply only to this master site. If you
select OK All, the selections will apply to all master sites.

Clicking Apply will cause the wizard to execute the propagation of the
master group to all master sites. OEM displays a rather cryptic message
“Applying User Changes...” as it propagates the master group objects. The
last step is to restart the replication activity.

At this point, you can log onto a master site and verify that the empty PUBS
schema now contains all the objects in the master group.

Now that we have multi-master replication going, we need to insure that it
continues to function.

MMR and OEM
Lets quickly look at the creation of the master definition site’s master
replication group using OEM. We will start with the user repadmin created
and the required grants executed. The push/purge jobs are in place, as are
the database links.

Start Oracle Enterprise Manager (OEM), either by navigating from the Start
button on Windows or by executing the Unix/Linux command:

oemapp console &

Either log on to the Management Server (if you use one) or select Stand-
alone.

Fig 6.8 OEM Navigation to Master Groups

Log onto the database containing the data to be replicated as repadmin.
Navigate down through the folders to Multi-Master Replication and the
Master Groups (Figure 6.9). Right click on the Master Groups folder and
select create.

Fig 6.9 OEM Create Master Group

For this example, we named the master replication group REP_GROUP2.
If you would like to manually generate replication support for each object,
uncheck the check box. The Connection Qualifier is to identify a special
type of database link, such as through a modem, which must be set up prior
to creating the master group.

The next step is to add objects to the group by selecting the Objects tab at
the top and then selecting the add button. This will bring up the “Add
objects to group” window (Figure 6.10). You can mix object types and
schema owners within a master group.

In our example, we will replicate all the objects in the PUBS schema. After
selecting PUBS from the schema compo box, click on all the check boxes to

display all objects in the Available Objects box. Select each object and click
the Add button.

Notice that we did not include the primary key indexes. As we discussed at
the start of this chapter, each master site will automatically create primary
key indexes on all replicated tables that have them defined. Clicking the OK
button will cause the wizard to include the selected objects in the master
group.

Fig 6.10 OEM Master Group Add Objects Window

As the wizard adds each table, it will verify that it contains a primary key. If
not, the wizard will ask you to define a column or columns that will uniquely
identify rows in the table (Figure 6.11). In this case, the author table does not
have a primary key defined. The author_key column uniquely identifies each
author (and should be a primary key) and can be used. The wizard will

require you to identify columns that uniquely identify rows for every table
without a primary key.

Fig 6.11 OEM Set Alternate Key Columns
If you have a table that cannot uniquely identify rows (duplicate rows are
allowed), then you will need to use a sequence (or some other method) to
create a primary key for the table. Cancel the wizard, key the table, and then
restart the process. Note that as far as replication is concerned you are defining
primary keys on all tables being replicated. Any violation of these keys,
whether defined with primary keys or with set alternate columns, will result in a
key collision that must be resolved.

Once the wizard verifies each table’s key, it will list them in the Objects tab
(Figure 6.12). At this point, you can add or remove additional objects as
required. You can also add remote master sites to accept the replicated group.

Adding master sites is a bit too much even for us, so we don’t recommend
adding them at this time. Suppose master sites are added and the wizard
replicates the master group to each master site. If the replication fails to
function, you would have no idea what caused the problem.

Fig 6.12 OEM Create Master Group Objects List

We selected the Show SQL button to see a list of the PL/SQL commands the
wizard will use to create the master group. It is highly recommended that you
copy and paste these commands to a text file. If the wizard fails, you will be
able to execute each command individually to locate the problem. Select
Create to execute the commands and create the master group. OEM will
indicate that it has successfully created the master group when it has finished.

Now that we have the master group REP_GROUP2 created, and replication
activities are running, it is time to propagate that group to another master site.

Maintaining Multi-Master Replication
Replication is now set up and running. As proud as you may be of this
achievement, you are still not out of the woods. That’s because you have to
keep it running. On top of that, you have to maintain the system to include
adding and removing objects from master groups and loading and removing
data. There is also the issue of resynchronizing data after fixing problems.

Monitoring Replication
Chapter 5, Monitoring Updatable Materialized Views, discussed methods to
monitor the replication jobs and the deferred error queue. Monitoring multi-
master replication is monitored in the same way (via dba_jobs), with the
exception that each master site must be monitored.

Each master site has three jobs that support replication: push, purge, and
do_deferred_repcat_admin jobs. Each job must continue to run for replication to
function.

Deferred Error Queue

When a receiver gets a data transaction from the deferred transaction queue but
can not apply it, the transaction is placed in the deferred error queue. To
insure data integrity, once there is a transaction in the error queue, all following
transactions end up in the error queue and replication basically stops on that
master site. To determine if there are errors in the deferred error queue use the
following sql statement:

select count(*) from deferror;

Any returned number greater than zero indicates that there are errors in the
queue. The transactions in the error queue must be applied or deleted from the
queue for replication to function. Chapter 5 details the scripts to monitor and
correct failed replication jobs and errors in the error queue.

Key Conflicts

There can be a number of reasons that transactions end up in the error queue.
One of the most common is due to key conflicts. This happens when a table
with a defined primary key and a row from another master site conflicts with a

row already in the table. Oracle will not allow the conflicting row to be
inserted into the table.

In a normal environment, the transaction would simply rollback. In a
replication environment, the row has already been applied at the originating
master site, so a roll back is not possible. This transaction will end up in the
error queue unless conflict resolution is defined.

Key conflicts do not just happen on primary keys. Remember when you added
that table without a primary key and used set columns to identify columns that
uniquely identified rows? The replication support defined a key on those
columns, and any transaction that violated the uniqueness of those columns
was rejected. That is why we said that using set columns would, for the purpose
of replication, define a primary key on those columns.

Conflict resolution will be further discussed in Chapter 7.

Adding and Removing Objects
Adding and removing objects is easy, provided they are not large. Simply stop
replication activity. Add the object to the master group at the master definition
site and restart replication. The new object will be propagated to all master
sites in the replication environment.

connect repadmin/repadmin@navdb

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY(
 gname => '"GROUP1"');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 gname => '"GROUP1"',
 type => 'TABLE',
 oname => '"CUSTOMER"',
 sname => '"PUBS"',
 copy_rows => TRUE,
 use_existing_object => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY(
 gname => '"GROUP1"');

END;
/

In the code above, we added the customer table to the master replication group.
When we resume replication activity, the customer table will be replicated to all
other master sites. But what if the table contains 5 million rows of data? It
may take days to propagate the table to the remote sites. In this case, you will
want to use one of the methods discussed below.

Moving Large Data Sets
Replication propagates data one change at a time. If you insert 300 rows into a
replicated table, those 300 rows are propagated and applied one row at a time
to insure data integrity.

Oracle supports parallel propagation across the database links, but the rows
must be inserted at each master site in order. This is not a problem for even
relatively high transaction rates on OLTP systems, however, if you load a
million rows of data, it could take hours or days to propagate. As if that were
not bad enough, the table that you load the data into will be read-only until the
propagation is completed.

Another example is in the replication of the PUBS schema. If that schema
contained millions of rows of data, the replication creation could take days.
There must be a better way to load data into a replicated table. There is, and it
is called offline instantiation.

Offline Instantiation
Offline instantiation allows you to create the master group object on the
remote sites and then place replication on top of those objects. While this
method can greatly speed up the creation or loading of replication objects, it is
not without its own issues. The base objects must be read-only from the time
the data begins moving until replication can assume control. If the base tables
are updated, then the copy will not be in sync.

The mechanics of offline instantiation are simple, the execution is not.
Basically, you create your master group with false “copy_rows”. This tells the
master group to use the rows already at the remote site. No data checks are
performed. If the tables are not in sync, then they will begin replication out of
sync and stay that way.

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 gname => '"GROUP1"',
 type => 'TABLE',
 oname => '"BOOK"',
 sname => '"PUBS"',
 copy_rows => FALSE,
 use_existing_object => TRUE);
END;
/

Now comes the hard part, how do you get the data to the remote site? The
difficulty is that the base tables must remain in read-only state until transfer is
completed. Any changes and the data at the two sites will be out of synch.

Export, Import Method

The tried and true method is to export the data at the base site, move it across
the network, and import it at the remote site. This method was about the only
thing available before Oracle9i. By piping the export to a compression
program, the dump file can be reduced to speed the movement across the
network. The most time consuming part is, of course, the import. Oracle9i
introduced a new method called Transportable Tablespaces.

Transportable Tablespaces

Transportable tablespaces allow the DBA to export only the tablespace
metadata from the data dictionary and then move the data in datafiles to the
remote site. Once the metadata is loaded into the remote site’s data dictionary,
the tablespace can be used. Since there is no import of data (except a small
amount of metadata), transportable tablespaces can greatly speed the process of
propagating the initial data to remote master sites.

Loading or Resynchronizing Data

So far, we have discussed moving large amounts of data before creating the
replication environment. But what about after replication is created and
running? You can always stop replication activity on the master group, but that
places all objects in the group in read-only status. To stop replication and not
place the objects in read-only status, you must use the dbms_reputil package.

execute DBMS_REPUTIL.REPLICATION_OFF;

This disables all replication triggers so that you can modify data without
replicating the changes. You can now load or remove data without propagating
the changes. When finished, reactivate the triggers.

execute DBMS_REPUTIL.REPLICATION_ON;

Once the replication triggers are active, further changes will be propagated. As
always, there is a catch. It is up to the DBA to insure that no user changes are
made to any site while the replication triggers are off. Also, to insure data
integrity, all sites should load the data simultaneously to insure against conflicts.
Data conflicts are discussed in the next chapter.

Monitoring with Oracle Enterprise Manager
OEM has become a powerful tool, and where it really shines is in monitoring
replication. If you sign on as repadmin and navigate down to the Advanced
Replication Administration folder, OEM displays a graphic of the replication
scheme, identifying sites with errors and sites currently propagating
transactions (Figure 6.13). You will quickly learn the different icons, but until
you do, click on the Legend button for a listing.

In Figure 6.13 you can see that the database link is active and that no master
site currently has transactions in the error queue. You can also see that the
MYDB.WORLD master site supports 2 tables, replicating to another site as
materialized views.

This one quick view gives you a detailed report of your replication status. The
only detail lacking is the state of the replication jobs at each site. If a job is
broken, transactions will build up in the deferred transaction queue, but they
will not generate errors. For that reason, you need to implement a script like
the ones detailed in Chapter 5 to monitor jobs at each master site.

Fig 6.13 OEM Replication Administration

Conclusion
We have discussed the basics of setting up and administrating a simple
multimaster replication scheme, as well as some additional items that need to
be considered when planning a multimaster scheme, such as the trusted and
untrusted security models. Some of the main points included:

• Plan your implementation in detail. Anticipate how you are going to
move the possible large amounts of data to remote master sites.

• Build the replication and then test it thoroughly. DOCUMENT
EVERYTHING!!!

• Develop a system to constantly monitor the replication status.

That about covers the basics of multi-master replication. Your master sites
should be happily replicating transactions back and forth. But you are still
not quite finished. No matter how simple your replication scheme is, if it
involves advanced replication, you should implement methods to resolve key
conflicts. And that is what we will cover in the next chapter.

Chapter 7 will discuss the causes of key conflicts and the available methods
to automatically resolve them.

