
Jon EmmonsShell Scripting for the Oracle Professional

Shell Scripting for the
Oracle Professional

Jon Emmons

Oracle Consultant

Author



Jon EmmonsShell Scripting for the Oracle Professional

My Background

• Undergraduate Computer Science
coursework.

• Extensive experience in Solaris and Linux
system administration.

• Oracle Database Administration on
versions 8.0 through 10gR2.

• As a consultant I must build efficient, low-
to no-maintenance scripts for a variaety of
purposes.



Jon EmmonsShell Scripting for the Oracle Professional

Books by Jon Emmons

Oracle Shell Scripting: Linux &

Unix Programming for Oracle

On shelves this summer

Pre-order at rampant-books.com

Easy Linux Commands: Working

Examples of Linux Command Syntax

Available Today at Bookstores
and at rampant-books.com



Jon EmmonsShell Scripting for the Oracle Professional

LifeAfterCoffee.com



Jon EmmonsShell Scripting for the Oracle Professional

WARNING:

• There are no “one size fits all” solutions.  You must
evaluate any techniques or solutions based on your
environments and goals

• Always test any solution in a non-production
environment before applying it to a production system.

• Make sure you completely understand new commands
and techniques before applying them in your
environment.

You have been warned!



Jon EmmonsShell Scripting for the Oracle Professional

Topics

• When to script

• Scripting Basics

• The Oracle connection

• Some useful tricks

• Troubleshooting

• Some Scripts



Jon EmmonsShell Scripting for the Oracle Professional

When to Script



Jon EmmonsShell Scripting for the Oracle Professional

When To Scripts

Shell scripting can be applied to a wide
variety of system and database tasks.

Though called “scripting” this is
programming, but don’t let that scare you.

Be careful of script bloat.  Be sensitive to
your coworkers and your possible
replacement.



Jon EmmonsShell Scripting for the Oracle Professional

Repeated Tasks

Necessity is the mother of invention.  The
first candidates for shell scripts will be
manual tasks which are done on a regular
basis.

• Backups

• Log monitoring

• Check disk space



Jon EmmonsShell Scripting for the Oracle Professional

Occasional Tasks

Tasks which are performed rarely enough
that their method, or even their need may
be forgotten.

• Periodic business related reports
(monthly/quarterly/yearly)

• Offsite backups

• Purging old data



Jon EmmonsShell Scripting for the Oracle Professional

Complex Manual Tasks

Some tasks must be performed manually
but may be aided by scripting.

• Checking for database locks

• Killing runaway processes

These tasks may evolve into repeated tasks



Jon EmmonsShell Scripting for the Oracle Professional

Helper Scripts

Don’t ignore the usefulness of “helper”
scripts.  Perhaps a system administrator
really does need to look over the log for a
system daily, but a script can help by
automatically sending it on to him!



Jon EmmonsShell Scripting for the Oracle Professional

Special Tasks

These are tasks which would not be
possible without a programming language.

• Storing OS information (performance
stats, disk usage, etc.) into the database

• High frequency monitoring (several times
a day or more)



Jon EmmonsShell Scripting for the Oracle Professional

Scripting Basics



Jon EmmonsShell Scripting for the Oracle Professional

Before You Start Scripting

You will find shell scripting an iterative process, but it is
best to have a good idea of your goals when you start.

• What are you trying to accomplish
• What are the dependencies

– Which dependencies can we check first
– Which dependencies cannot be checked

• How broad will the effects of this script be
• What happens if any step fails

– Should the script continue or be halted

• What results or output do we want from the script
– Who should be notified of the results and how

• What cleanup should be done when the script is complete
• What if two copies of the script get executed simultaneously



Jon EmmonsShell Scripting for the Oracle Professional

Scripting Tools

Any plain text editor will work.

• vi (Command line UNIX)

• Notepad (Windows)

• TextEdit (Mac OSX)

• EditPlus (Windows, shareware, $30)
editplus.com



Jon EmmonsShell Scripting for the Oracle Professional

The Shell

Shell scripting allows us to use commands
we already use at the command line.
This considerably eases the learning
curve.

We are familiar with the interactive mode of
the shell.  Almost anything can be done in
a script which can be done at the
command line.



Jon EmmonsShell Scripting for the Oracle Professional

Which Shell to Use

My preference is Bash (bash) because of its
ubiquity and compatibility with Bourne (sh).

Other common shells include:
• C shell (csh)
• Korn shell (ksh)
• Z Shell (zsh)

It is important to pick a shell and stick with it.  The
differences between shells are often small but
infuriating.



Jon EmmonsShell Scripting for the Oracle Professional

The Anatomy of a Command

grep –i localhost /etc/hosts

Command Option Arguments

Options change the behavior of a command

Arguments control what the command acts upon



Jon EmmonsShell Scripting for the Oracle Professional

Variables

Variables are set using the = sign

ORACLE_SID=oss

Variables and their contents are case sensitive, so
the variable ORACLE_SID is different from the
variable oracle_sid.

Shell variables are un-typed and may contain
integers or text.

Numbers with a decimal point will be treated as
text. (e.g. 3.14)



Jon EmmonsShell Scripting for the Oracle Professional

Variable Naming

• Variables should have meaningful names

• Variable names do not need to be short

• All UPPER CASE typically indicates an
environmental variable

• Local (script) variables are conventionally
all lowercase

• Underscores (_) are best for separating
words in variable names



Jon EmmonsShell Scripting for the Oracle Professional

Variable Scope

• Variables will be available within the script
(or shell session) which sets them

• By exporting variables they can be made
available to subsequently called scripts.

This is why we typically perform an

export ORACLE_SID

after setting the variable.

Exporting is not necessary when variables
will only be used within the current script.



Jon EmmonsShell Scripting for the Oracle Professional

Using Variables

The dollar sing ($) is used to retrieve the contents

of a variable.

$ echo $ORACLE_SID

oss

If you are trying to use a variable where it may be
surrounded by other letters you may need to
add curly braces {} around the name.

$ echo ${ORACLE_SID}_sid

oss_sid



Jon EmmonsShell Scripting for the Oracle Professional

Comments and Whitespace

• Anything appearing after a pound symbol
(#) on a line will be ignored.

• Adding comments can aid troubleshooting
and future editing of the script.

• Blank lines are ignored when a script is
executed.

• Blank lines and other whitespace (tabs,
spaces) can be used to improve script
readability.



Jon EmmonsShell Scripting for the Oracle Professional

A basic script

#!/bin/bash

echo "The current database is $ORACLE_SID"

echo "The current running processes for

$ORACLE_SID are"

ps –ef | grep $ORACLE_SID



Jon EmmonsShell Scripting for the Oracle Professional

A basic script

#!/bin/bash

echo "The current database is $ORACLE_SID"

echo "The current running processes for

$ORACLE_SID are"

ps –ef | grep $ORACLE_SID

This first line indicates what
interpreter to use when running
this script



Jon EmmonsShell Scripting for the Oracle Professional

A basic script

#!/bin/bash

echo "The current database is $ORACLE_SID"

echo "The current running processes for

$ORACLE_SID are"

ps –ef | grep $ORACLE_SID

Whitespace is used to
separate commands to
improve readability.



Jon EmmonsShell Scripting for the Oracle Professional

A basic script

#!/bin/bash

echo "The current database is $ORACLE_SID"

echo "The current running processes for

$ORACLE_SID are"

ps –ef | grep $ORACLE_SID

Variables referenced here
must have already been
set and exported.



Jon EmmonsShell Scripting for the Oracle Professional

A basic script

#!/bin/bash

echo "The current database is $ORACLE_SID"

echo "The current running processes for

$ORACLE_SID are"

ps –ef | grep $ORACLE_SID

Note the variable being
used as an argument.
We'll see a lot of this.



Jon EmmonsShell Scripting for the Oracle Professional

The Shebang (#!)

The "shebang" is a special comment.  Since
it is a comment it will not be executed
when the script is run.  Instead before the
script is run, the shell calling the script will
check for the #! pattern.  If found it will

invoke the script using that interpreter.

If no #! is found most shells will use the

current shell to run the script.



Jon EmmonsShell Scripting for the Oracle Professional

The Shebang (cont)

Since the shells are installed in different locations
on different systems you may have to alter the
#! line.  For example, the bash shell may be in
/bin/bash, /usr/bin/bash or
/usr/local/bin/bash.

Setting the shell explicitly like this assures that the
script will be run with the same interpreter
regardless of who executes it (or what their
default shell may be.)



Jon EmmonsShell Scripting for the Oracle Professional

Script Naming

Descriptive names are important.

• Use full words

• Separate words with underscores

• Avoid using spaces or other unusual characters

• There is no requirement for script names, but
typically they will end in .sh

Talk with others at your site who are doing shell
scripting and try to agree on a convention.



Jon EmmonsShell Scripting for the Oracle Professional

Script Permissions

The execute permission must be turned on before
a script can be executed.  It can be turned on
for the user (u), group (g) or all users (o) by
using the chmod command.

chmod ugo+x test_script.sh

If execute has not been granted you will get an
error like this:

-bash: ./test_script.sh: Permission denied



Jon EmmonsShell Scripting for the Oracle Professional

status.sh

#!/bin/sh

# Show the user and host name

echo "Hello $USER!"

echo "Welcome to `hostname`"

echo "--- Current Disk Usage ---"
df -h

# On some systems the -h (human readable) option will not work with df

# In that case you can use the -k option to display output in killobytes

echo "--- Current uptime, users and load averages ---"
uptime

echo "--- Load average numbers represent the 1, 5 and 15 minute load
averages ---"

echo "--- Lower numbers are better for load averages ---"
# These are the first two things I check when I think there is a problem

# with a system, but I'm sure you can think of some other things to add
here



Jon EmmonsShell Scripting for the Oracle Professional

status.sh

#!/bin/sh

# Show the user and host name

echo "Hello $USER!"

echo "Welcome to `hostname`"

echo "--- Current Disk Usage ---"
df -h

# On some systems the -h (human readable) option will not work with df

# In that case you can use the -k option to display output in killobytes

echo "--- Current uptime, users and load averages ---"
uptime

echo "--- Load average numbers represent the 1, 5 and 15 minute load
averages ---"

echo "--- Lower numbers are better for load averages ---"
# These are the first two things I check when I think there is a problem

# with a system, but I'm sure you can think of some other things to add
here

This output will help
the user identify what
they are looking at.

This comment explains the
command option used and
how it may need to be
changed on some systems.



Jon EmmonsShell Scripting for the Oracle Professional

status.sh Usage

$ ./status.sh

Hello oracle!

Welcome to glonk

--- Current Disk Usage ---

Filesystem            Size  Used Avail Use% Mounted on

/dev/mapper/VolGroup00-LogVol00

                       72G  6.5G   61G  10% /

/dev/hda1              99M  9.8M   84M  11% /boot

/dev/shm              252M     0  252M   0% /dev/shm

--- Current uptime, users and load averages ---

 19:17:41 up 10 days,  6:02,  2 users,  load average:
0.00, 0.02, 0.00

--- Load average numbers represent the 1, 5 and 15 minute
load averages ---

--- Lower numbers are better for load averages ---

This additional output provides
very useful information on the
results we're looking at.



Jon EmmonsShell Scripting for the Oracle Professional

Basic Script Setup

• Make a plan!
• Create a new text file
• Specify the interpreter to be used (#!)
• Set variables using =
• Retrieve variable contents using $
• Add {} around variable name if necessary
• Use comments (#) and whitespace (blank lines,

spaces and tabs) to improve readability
• Grant execute permissions to the appropriate

users with chmod



Jon EmmonsShell Scripting for the Oracle Professional

Running Your Script

If the proper execute permissions have
been applied:

./test_script.sh

/home/oracle/test_script.sh

If . is in your $PATH variable

test_script.sh



Jon EmmonsShell Scripting for the Oracle Professional

Keeping Your Scripts Organized

• Work with sysadmins and DBAs to come
up with a convention

• Development should be done in an area
away from production scripts

• Scripts for a specific database in
/u01/app/oracle/admin/sid/scripts

• Scripts used on multiple databases in
/u01/app/oracle/admin/common/scripts



Jon EmmonsShell Scripting for the Oracle Professional

Break



Jon EmmonsShell Scripting for the Oracle Professional

Decisions and Loops



Jon EmmonsShell Scripting for the Oracle Professional

The if Statement

The simplest flow control statement is the
if statement.

$ age=29

$ if [ $age -lt 30 ]

> then

> echo "You're still under 30"

> fi

You're still under 30



Jon EmmonsShell Scripting for the Oracle Professional

The if Statement

The simplest flow control statement is the
if statement.

$ age=29

$ if [ $age -lt 30 ]

> then

> echo "You're still under 30"

> fi

You're still under 30

Note that the end of an if
statement is indicated by
the keyword fi



Jon EmmonsShell Scripting for the Oracle Professional

if, elseif and else

#!/bin/sh

age=39

if [ $age -lt 30 ]

then

echo "You're still under 30"

elif [ $age -ge 30 -a $age -le 40 ]

then

echo "You're in your 30s"

else

echo "You're 40 or over"

fi



Jon EmmonsShell Scripting for the Oracle Professional

if, elseif and else

#!/bin/sh

age=39

if [ $age -lt 30 ]

then

echo "You're still under 30"

elif [ $age -ge 30 -a $age -le 40 ]

then

echo "You're in your 30s"

else

echo "You're 40 or over"

fi

Initially this condition is
checked and, if true, the code
in the then section executed



Jon EmmonsShell Scripting for the Oracle Professional

if, elif and else

#!/bin/sh

age=39

if [ $age -lt 30 ]

then

echo "You're still under 30"

elif [ $age -ge 30 -a $age -le 40 ]

then

echo "You're in your 30s"

else

echo "You're 40 or over"

fi

Only if the initial condition has
failed will the elif be
considered



Jon EmmonsShell Scripting for the Oracle Professional

if, elif and else

#!/bin/sh

age=39

if [ $age -lt 30 ]

then

echo "You're still under 30"

elif [ $age -ge 30 -a $age -le 40 ]

then

echo "You're in your 30s"

else

echo "You're 40 or over"

fi
Finally if the if condition and
all elif conditions have failed
the else, if present, will be
executed



Jon EmmonsShell Scripting for the Oracle Professional

if, elif and else

• Conditional statements can compare numbers
or text

• An if statement will need to have a then and
an fi to indicate the end of the statement

• An if statement can have one or more elif

statements or may have none

• An if statement may have one else statement
but may have no else statement

• Only one section of code will be executed



Jon EmmonsShell Scripting for the Oracle Professional

Mathematical Comparators



Jon EmmonsShell Scripting for the Oracle Professional

String Comparators



Jon EmmonsShell Scripting for the Oracle Professional

Comparing Strings

$ if [ $ORACLE_SID = "oss" ]

> then

> echo "Using the sid for the Oracle Shell
Scripting database"

> fi

Using the sid for the Oracle Shell Scripting

database



Jon EmmonsShell Scripting for the Oracle Professional

Checking Variables

$ if [ $ORACLE_SID ]

> then

> echo "ORACLE_SID variable is set to $ORACLE_SID"

> fi

ORACLE_SID variable is set to oss

This statement checks to see if the variable
$ORACLE_SID has been set.

The statement will fail if the variable has not
been set, or if it is set to a null value.



Jon EmmonsShell Scripting for the Oracle Professional

File Comparators



Jon EmmonsShell Scripting for the Oracle Professional

Checking Files

$ if [ -e
$ORACLE_HOME/dbs/init$ORACLE_SID.ora ]

> then

> echo "An init file exists for the
database $ORACLE_SID"

> fi

An init file exists for the database oss



Jon EmmonsShell Scripting for the Oracle Professional

Complex Comparisons



Jon EmmonsShell Scripting for the Oracle Professional

Checking Multiple Files

$ if [ -e $ORACLE_HOME/dbs/init$ORACLE_SID.ora -a -e \

> $ORACLE_HOME/dbs/spfile$ORACLE_SID.ora ]

> then

> echo "We seem to have both an spfile and an init file"

> fi

We seem to have both an spfile and an init file



Jon EmmonsShell Scripting for the Oracle Professional

Case Statement

#!/bin/sh

case $ORACLE_SID

in

oss)

echo "Using the sid for the Oracle Shell
Scripting database"

;;

db1)

echo "Using the default Oracle database"

;;

*)

echo "I don't have a description for this
database"

;;

esac



Jon EmmonsShell Scripting for the Oracle Professional

Case Statement

#!/bin/sh

case $ORACLE_SID

in

oss)

echo "Using the sid for the Oracle Shell
Scripting database"

;;

db1)

echo "Using the default Oracle database"

;;

*)

echo "I don't have a description for this
database"

;;

esac

The beginning of a case
statement is indicated by the
case keyword.  The end is
indicated by case spelled
backwards



Jon EmmonsShell Scripting for the Oracle Professional

Case Statement

#!/bin/sh

case $ORACLE_SID

in

oss)

echo "Using the sid for the Oracle Shell
Scripting database"

;;

db1)

echo "Using the default Oracle database"

;;

*)

echo "I don't have a description for this
database"

;;

esac

The input given at the
beginning will be compared to
each value in the list

The asterisk is a
wildcard and will
match any string

The code to be executed for each option is
terminated by a double semicolon.



Jon EmmonsShell Scripting for the Oracle Professional

Case Statement

• The code following the first matching option will
be executed.

• If no match is found the script will continue on
after the esac statement without executing any
code.

• Some wildcards and regular expressions can be
used.

• A case could be rewritten as a series of elif
statements but a case is typically more easily
understood.



Jon EmmonsShell Scripting for the Oracle Professional

The while Loop

The while loop will repeat a chunk of code as
long as the given condition is true.

#!/bin/sh

i=1

while [ $i -le 10 ]

do

echo "The current value of i is $i"

i=`expr $i + 1`

done



Jon EmmonsShell Scripting for the Oracle Professional

The while Loop

#!/bin/sh

i=1

while [ $i -le 10 ]

do

echo "The current value of i is $i"

i=`expr $i + 1`

done

Make sure your loop variable is
initialized before the loop starts

Also makes sure that something will
eventually cause the while condition
to fail, otherwise you may end up in
an infinite loop!



Jon EmmonsShell Scripting for the Oracle Professional

The for Loop

The for loop allows you to easily parse a set of values.

#!/bin/sh

count=0

for i in 2 4 6

do

echo "i is $i"

count=`expr $count + 1`

done

echo "The loop was executed $count times"



Jon EmmonsShell Scripting for the Oracle Professional

The for Loop

#!/bin/sh

count=0

for i in 2 4 6

do

echo "i is $i"

count=`expr $count + 1`

done

echo "The loop was executed $count
times"

This for loop will be executed three
times, once with i=2, once with i=4
and once with i=6



Jon EmmonsShell Scripting for the Oracle Professional

Breaking Out of the Current Loop

The break statement will cause the shell to stop executing the current loop
and continue on after its end.

#!/bin/sh

files=`ls`

count=0

for i in $files

do

count=`expr $count + 1`

if [ $count -gt 100 ]

then

echo "There are more than 100 files in the current
directory"

break
fi

done



Jon EmmonsShell Scripting for the Oracle Professional

Prompting for User Input

For scripts which will be run interactively we
can prompt the user to give us input.

The read command can be used to set a

variable with a value read from user input.

#!/bin/sh

echo "Enter your name"

read name

echo "Hi $name.  I hope you like this script"



Jon EmmonsShell Scripting for the Oracle Professional

Prompting for User Input

$ ./welcome.sh

Enter your name

Jon

Hi Jon.  I hope you like this script

Note that the text input will be displayed on the
screen.  If you do not want the input displayed
(like when accepting a password) use the -s
option for the read command.



Jon EmmonsShell Scripting for the Oracle Professional

Using Arguments

Accepting arguments to your script can allow you
to make a script more flexible.

The variables $1, $2, $3 etc. refer to the
arguments given in order.

The variable $@ refers to the complete string of
arguments.

The variable $# will give the number of arguments
given.



Jon EmmonsShell Scripting for the Oracle Professional

Using Arguments

if [ $1 ]

then

ORACLE_SID=$1

ORAENV_ASK=NO

. oraenv

else

if [ ! $ORACLE_SID ]

then

echo "Error: No ORACLE_SID set or provided as
an argument"

exit 1

fi

fi



Jon EmmonsShell Scripting for the Oracle Professional

Using Arguments

if [ $1 ]

then

ORACLE_SID=$1

ORAENV_ASK=NO

. oraenv

else

if [ ! $ORACLE_SID ]

then

echo "Error: No ORACLE_SID set or provided as
an argument"

exit 1

fi

fi

Check to see if an argument was given

If it was, we will use it to set the
ORACLE_SID variable then
execute oraenv



Jon EmmonsShell Scripting for the Oracle Professional

The Oracle Connection



Jon EmmonsShell Scripting for the Oracle Professional

Calling SQL Scripts
from Shell Scripts

• SQL*Plus can be called within shell
scripts like any other command.

• A username and password can be
provided to avoid being prompted for
them.

• A SQL script can be provided as an
argument.

• The -S option can be used to suppress
the SQL*Plus banner and prompts.



Jon EmmonsShell Scripting for the Oracle Professional

Calling a SQL Script

#!/bin/sh

sqlplus -S system/manager @database_status.sql

This short script will allow you to easily execute a
SQL script with given permissions

Warning: Calling sqlplus in this manner may
expose your username and password to
others on the system!

Warning: Files which contain usernames
and passwords must be properly secured to
avoid exposing the passwords!



Jon EmmonsShell Scripting for the Oracle Professional

Getting Past the
Password Problems

A combination of two methods can be used to get
around the password problems with the
previous method.

• Place the password in a variable so it will not
display in a process listing.

• Rather than placing the password in the shell
script store it in a separate, secure file.



Jon EmmonsShell Scripting for the Oracle Professional

Placing the Password in a Variable

#!/bin/sh

system_pw=manager

sqlplus -S system/$system_pw @database_status.sql

When this command is running a process listing
(ps) will show the variable name ($system_pw)

instead of the password.



Jon EmmonsShell Scripting for the Oracle Professional

Reading the Password from a
Secure File

#!/bin/sh

system_pw=`cat
/u01/app/oracle/admin/oss/pw/system.pw`

sqlplus -S system/$system_pw @database_status.sql

By reading the password from a text file the script
is no longer required to have the password
embedded in it.

This has the added advantage of providing a
single location where passwords can be
changed for all scripts at once.



Jon EmmonsShell Scripting for the Oracle Professional

Securing the Password Files

In order to keep the passwords secure the files
which contain them should have as restrictive
permissions as possible.  Using the chmod

command we can grant the owner (typically the
oracle user) read and write permissions and
revoke all permissions for other users.

chmod u=rw,g=,o=

/u01/app/oracle/admin/oss/pw/system.pw



Jon EmmonsShell Scripting for the Oracle Professional

Using SQL Directly In Shell Scripts

By using file markers we can call SQL
directly from our shell scripts.  This can
make scripts easier to move and maintain
as there is only one file to work with.



Jon EmmonsShell Scripting for the Oracle Professional

#!/bin/sh

sqlplus -S system/manager << EOF
set pagesize 0 linesize 80 feedback off

SELECT 'The database ' || instance_name ||

' has been running since ' ||
to_char(startup_time, 'HH24:MI MM/DD/YYYY')

FROM v\$instance;

SELECT 'There are ' || count(status) ||

' data files with a status of ' || status

FROM dba_data_files

GROUP BY status

ORDER BY status;

exit;

EOF



Jon EmmonsShell Scripting for the Oracle Professional

Using File Markers

• The shell will interpret everything that follows
<< EOF as input to the sqlplus command until it
encounters another EOF on its own line.

• Multiple file markers can be used within the
same script but they will need to be unique!
Common file markers are EOF1, EOF2, etc. or
EOA, EOB, EOC etc.

• File markers do not have to be all upper-case
but it does make them easier to spot in a script.

• Be sure to provide appropriate commits!



Jon EmmonsShell Scripting for the Oracle Professional

SQL Script Arguments

SQL scripts can accept arguments just like
shell scripts.

SQL script arguments are stored in the
variables &1, &2, etc.

SELECT username, account_status,
expiry_date

FROM dba_users WHERE
lower(username)=lower('&1');



Jon EmmonsShell Scripting for the Oracle Professional

Shell Variables in Embedded SQL

When embedding SQL with file markers variables from the
shell script can be used inline.

#!/bin/sh

lookup=$1

sqlplus -S system/manager << EOF

SELECT username, account_status,
expiry_date

FROM dba_users WHERE
lower(username)=lower('$lookup');

exit;

EOF



Jon EmmonsShell Scripting for the Oracle Professional

Getting Information Out of
SQL*Plus

The output of sqlplus can be sent to a file on the system
for further processing.

Output is redirected with the > symbol.

When redirecting both input and output things can get
confusing.

sqlplus -S "/ as sysdba" << EOF > $tempfile

It is easiest to look at this as two separate statements, the
redirection of input (<< EOF) and the redirection of the
output (> $tempfile).

Note that the output is being redirected to the file location
described by the tempfile variable.



Jon EmmonsShell Scripting for the Oracle Professional

Getting Information Out of
SQL*Plus

#!/bin/bash

tempfile=/tmp/audit_locked_accounts_$ORACLE_SID.txt
# Start sqlplus and check for locked accounts

sqlplus -S "/ as sysdba" << EOF > $tempfile

set pagesize
select 'The following accounts were found to be unlocked and should not
be'

from dual;

define exit_status = 0

column xs new_value exit_status
select username, account_status, 1 as xs from dba_users

where account_status != 'LOCKED'

and username in ('HR', 'SCOTT', 'OUTLN', 'MDSYS', 'CTXSYS');

exit &exit_status

EOF
# If the exit status of sqlplus was not 0 then we will send an email

if [ $? != 0 ]

then

mail -s "Accounts Unlocked in $ORACLE_SID" oracle < $tempfile

fi



Jon EmmonsShell Scripting for the Oracle Professional

Manipulating Other Commands

• These methods can also be applied with
RMAN for backup and recovery.

• File markers can be used to emulate user
input for many (but not all) commands.



Jon EmmonsShell Scripting for the Oracle Professional

Break



Jon EmmonsShell Scripting for the Oracle Professional

Some Useful Tricks



Jon EmmonsShell Scripting for the Oracle Professional

Escape Character

The escape character will prevent the shell from
interpreting the following character as anything
other than text.

Backslash (\) is the escape character in the Bash

shell.

Escaping special characters (such as * ' $ ;

and space) can help you get the output you
want and to handle special characters in file
names.

$ echo "The escape character in Bash is \"\\\""

The escape character in Bash is "\"



Jon EmmonsShell Scripting for the Oracle Professional

Single Quotes

Single quotes will cause all special
characters (except the single quote) to be
ignored.

$ echo 'In single quotes "double quotes",
$ and even ; are all safe'

In single quotes "double quotes", $ and

even ; are all safe



Jon EmmonsShell Scripting for the Oracle Professional

Double Quotes

Double quotes will cause most special
characters to be ignored.

Variables and back quotes will be expanded
and backslashes are interpreted as an
escape character.

$ echo "In double quotes we can use
variables like $ORACLE_SID"

In double quotes we can use variables like
oss



Jon EmmonsShell Scripting for the Oracle Professional

Back Quotes

Text between back quotes (`) is executed as a

command and its output substituted in its place.

This allows us to concatenate command results
with text.

$ echo "The current date and time is
`date`"

The current date and time is Sun May  6

23:19:55 EDT 2007



Jon EmmonsShell Scripting for the Oracle Professional

Redirecting Output to a File

• Output from commands can easily be
sent to a file instead of the display with a
> or >>

• The > will replace the given file if it exists
but the >> will concatenate the output on

the end of the given file

• Both the standard output and the error
output can be redirected to a file



Jon EmmonsShell Scripting for the Oracle Professional

Redirecting Standard Output

$ ls
log1.log  log3.log  myfile.txt  sample.txt

types_of_unix.txt

log2.log  marx.txt  output.txt  test_script.sh

$ ls > listing.txt
$ more listing.txt
listing.txt

log1.log

log2.log

log3.log

marx.txt

myfile.txt

output.txt

sample.txt

test_script.sh

types_of_unix.txt



Jon EmmonsShell Scripting for the Oracle Professional

Redirecting Error Output

$ find ./ -name "*.txt" >

text_files.txt 2>errors.txt

While > or >> redirect standard output 2> or
2>> will redirect error output.

Standard or error output can be redirected
to /dev/null (2>/dev/null) to discard the
output



Jon EmmonsShell Scripting for the Oracle Professional

Linking Output to Input

The pipe (|) can be used to link the output

of one command to the input of another.

$ ps -ef | grep oss

oracle    2684     1  0 14:02 ?        00:00:00 ora_pmon_oss

oracle    2686     1  0 14:02 ?        00:00:00 ora_psp0_oss

oracle    2688     1  0 14:02 ?        00:00:00 ora_mman_oss

oracle    2690     1  0 14:02 ?        00:00:02 ora_dbw0_oss

oracle    2692     1  0 14:02 ?        00:00:03 ora_lgwr_oss

oracle    2694     1  0 14:02 ?        00:00:01 ora_ckpt_oss

oracle    2696     1  0 14:02 ?        00:00:06 ora_smon_oss

oracle    2698     1  0 14:02 ?        00:00:00 ora_reco_oss



Jon EmmonsShell Scripting for the Oracle Professional

Performing Math in the Shell

• The expr command can be used to perform simple math in the
shell.

$ expr 2 + 7
9

$ expr 4 + 3 \* 3
13

$ expr 13 / 2
7

The asterisk is used for multiplication but must be escaped by a
backslash.

Results will be truncated to whole numbers.



Jon EmmonsShell Scripting for the Oracle Professional

Sending Email

Sending email is simple!

Use -s to specify a subject line, give an
address as an argument (or list multiple
addresses in quotes and separated by
commas) and redirect a file into the
command.

mail -s "Alert log from $ORACLE_SID `hostname`"

oracle <

/u01/app/oracle/admin/$ORACLE_SID/bdump/alert_$ORA

CLE_SID.log



Jon EmmonsShell Scripting for the Oracle Professional

Scheduling with Cron

Repeated tasks may be scheduled with the
crontab command.

crontab -e will edit the current user's crontab
with the default editor.

Comments can be put into the crontab with the #.

# Weekly full hot backup

00 03 * * 0
/u01/app/oracle/admin/common/scripts/hot_backup.sh
oss 0



Jon EmmonsShell Scripting for the Oracle Professional

Crontab entries are executed when all the
specified time conditions are met.*

00 03 * * 0     /u01/app/oracle/admin/com…

This entry will be executed at 0 minutes
past the hour, the hour of 3(am), any day
of the month, any month of the year, but
only if it is Sunday.



Jon EmmonsShell Scripting for the Oracle Professional

*On many platforms if the day of the week
and day of month/month of year are both
specified the job will be executed when
either condition is met.

So, the following job would run on the first
Sunday of the month on some platforms,
but on others would run every Sunday
and the 1st through 7th of each month.

00 03 1-7 * 0

/u01/app/oracle/admin/com…



Jon EmmonsShell Scripting for the Oracle Professional

Scheduling One-time Tasks with at

Use at for one-time tasks which need to be run
off-hours or at a specific time.

at can easily schedule jobs to run at a specific
time today, tomorrow, or on a specified date
and time.

Just like with cron output from commands run with
at will be sent to the user via email.  If you
would like an email when the job completes,
regardless of output just add the -m flag.



Jon EmmonsShell Scripting for the Oracle Professional

Run an export at 11:30 pm today:
$ at 23:30
at>
/u01/app/oracle/admin/oss/scripts/full_exp
ort.sh

at> ctrl-d <EOT>

job 5 at 2007-01-21 23:30

Run an export at 11:00 am tomorrow and email me when
complete:

$ at -m 11:00 tomorrow
at>
/u01/app/oracle/admin/oss/scripts/full_exp
ort.sh

at> ctrl-d <EOT>

job 6 at 2007-01-22 11:00



Jon EmmonsShell Scripting for the Oracle Professional

Managing at Jobs

The atq command will list jobs in the at queue.

$ atq

6       2007-01-22 11:00 a oracle

5       2007-01-21 23:30 a oracle

To remove a job use atrm with the job number
from the queue.

$ atrm 6



Jon EmmonsShell Scripting for the Oracle Professional

Troubleshooting Tips



Jon EmmonsShell Scripting for the Oracle Professional

Determining where a
failure is happening

Add lines like echo "Completed first for
loop" or echo "About to launch
sqlplus" to help pinpoint errors.

Echo count variables.  echo "Loop
completed time $i"

When you're done with these markers simply
comment them out with a pound rather than
removing them.  You might need them again.



Jon EmmonsShell Scripting for the Oracle Professional

Debug Mode

Running a script in debug mode will print each line
of the shell script (including comments) before it
is executed.

Enable debug mode by adding -v after the
interpreter listing at the shebang.

#!/bin/sh –v

Leaving this mode on will generate a lot of output
and may expose passwords.  Debug mode
should be enabled when needed and
immediately disabled when done.



Jon EmmonsShell Scripting for the Oracle Professional

$ ./status.sh
#!/bin/bash -v

#

# status.sh script by Jon Emmons

# Published in Oracle Shell Scripting, Rampant
TechPress, 2007

#

# A simple script to provide some information about
the system

# Show the user and host name

echo "Hello $USER!"

Hello oracle!

echo "Welcome to `hostname`"

hostname

Welcome to glonk

echo "--- Current Disk Usage ---"

--- Current Disk Usage ---

df -h



Jon EmmonsShell Scripting for the Oracle Professional

Show Commands After
Variable Substitution

Another option, -x, will show each command
once variables have been substituted in.

Debug output will appear with a + at the beginning
of each line.

This can help determine where problems are with
loops and if statements.

-vx can be specified if both debug modes are
desired

Again, this mode should only be enabled when
needed.



Jon EmmonsShell Scripting for the Oracle Professional

$ ./status.sh
+ echo 'Hello oracle!'

Hello oracle!

++ hostname

+ echo 'Welcome to glonk'

Welcome to glonk

+ echo '--- Current Disk Usage ---'

--- Current Disk Usage ---

+ df -h

Filesystem            Size  Used Avail Use% Mounted
on

/dev/mapper/VolGroup00-LogVol00

                       72G  6.6G   61G  10% /

/dev/hda1              99M  9.8M   84M  11% /boot

/dev/shm              252M     0  252M   0% /dev/shm



Jon EmmonsShell Scripting for the Oracle Professional

Some Scripts



Jon EmmonsShell Scripting for the Oracle Professional

Script Downloads

View scripts shown in this presentation at

http://www.lifeaftercoffee.com/presentation-scripts/

Password: luwak



Jon EmmonsShell Scripting for the Oracle Professional

More Information

Oracle Shell Scripting: Linux &
UNIX Programming for Oracle

On shelves this summer.

Cover price $49.95

Buy for $34.95

Available at rampant-books.com

Get an extra %10 off with
coupon code thanks-gmoug



Jon EmmonsShell Scripting for the Oracle Professional

More Information/Contact Me

www.lifeaftercoffee.com



Jon EmmonsShell Scripting for the Oracle Professional

Thanks to…

• The Green Mountain Oracle User Group

– Take an extra 10% off at rampant-books.com
with coupon code thanks-gmoug

• Burleson Consulting

• Rampant TechPress



Jon EmmonsShell Scripting for the Oracle Professional


